Metamath Proof Explorer


Theorem csbfrecsg

Description: Move class substitution in and out of the well-founded recursive function generator. (Contributed by Scott Fenton, 18-Nov-2024)

Ref Expression
Assertion csbfrecsg ( 𝐴𝑉 𝐴 / 𝑥 frecs ( 𝑅 , 𝐷 , 𝐹 ) = frecs ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝐴 / 𝑥 𝐹 ) )

Proof

Step Hyp Ref Expression
1 csbuni 𝐴 / 𝑥 { 𝑓 ∣ ∃ 𝑧 ( 𝑓 Fn 𝑧 ∧ ( 𝑧𝐷 ∧ ∀ 𝑦𝑧 Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ ∀ 𝑦𝑧 ( 𝑓𝑦 ) = ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) ) } = 𝐴 / 𝑥 { 𝑓 ∣ ∃ 𝑧 ( 𝑓 Fn 𝑧 ∧ ( 𝑧𝐷 ∧ ∀ 𝑦𝑧 Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ ∀ 𝑦𝑧 ( 𝑓𝑦 ) = ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) ) }
2 csbab 𝐴 / 𝑥 { 𝑓 ∣ ∃ 𝑧 ( 𝑓 Fn 𝑧 ∧ ( 𝑧𝐷 ∧ ∀ 𝑦𝑧 Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ ∀ 𝑦𝑧 ( 𝑓𝑦 ) = ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) ) } = { 𝑓[ 𝐴 / 𝑥 ]𝑧 ( 𝑓 Fn 𝑧 ∧ ( 𝑧𝐷 ∧ ∀ 𝑦𝑧 Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ ∀ 𝑦𝑧 ( 𝑓𝑦 ) = ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) ) }
3 sbcex2 ( [ 𝐴 / 𝑥 ]𝑧 ( 𝑓 Fn 𝑧 ∧ ( 𝑧𝐷 ∧ ∀ 𝑦𝑧 Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ ∀ 𝑦𝑧 ( 𝑓𝑦 ) = ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) ) ↔ ∃ 𝑧 [ 𝐴 / 𝑥 ] ( 𝑓 Fn 𝑧 ∧ ( 𝑧𝐷 ∧ ∀ 𝑦𝑧 Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ ∀ 𝑦𝑧 ( 𝑓𝑦 ) = ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) ) )
4 sbc3an ( [ 𝐴 / 𝑥 ] ( 𝑓 Fn 𝑧 ∧ ( 𝑧𝐷 ∧ ∀ 𝑦𝑧 Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ ∀ 𝑦𝑧 ( 𝑓𝑦 ) = ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) ) ↔ ( [ 𝐴 / 𝑥 ] 𝑓 Fn 𝑧[ 𝐴 / 𝑥 ] ( 𝑧𝐷 ∧ ∀ 𝑦𝑧 Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ [ 𝐴 / 𝑥 ]𝑦𝑧 ( 𝑓𝑦 ) = ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) ) )
5 sbcg ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ] 𝑓 Fn 𝑧𝑓 Fn 𝑧 ) )
6 sbcan ( [ 𝐴 / 𝑥 ] ( 𝑧𝐷 ∧ ∀ 𝑦𝑧 Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ) ↔ ( [ 𝐴 / 𝑥 ] 𝑧𝐷[ 𝐴 / 𝑥 ]𝑦𝑧 Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ) )
7 sbcssg ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ] 𝑧𝐷 𝐴 / 𝑥 𝑧 𝐴 / 𝑥 𝐷 ) )
8 csbconstg ( 𝐴𝑉 𝐴 / 𝑥 𝑧 = 𝑧 )
9 8 sseq1d ( 𝐴𝑉 → ( 𝐴 / 𝑥 𝑧 𝐴 / 𝑥 𝐷𝑧 𝐴 / 𝑥 𝐷 ) )
10 7 9 bitrd ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ] 𝑧𝐷𝑧 𝐴 / 𝑥 𝐷 ) )
11 sbcralg ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ]𝑦𝑧 Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ↔ ∀ 𝑦𝑧 [ 𝐴 / 𝑥 ] Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ) )
12 sbcssg ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ] Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 𝐴 / 𝑥 Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝐴 / 𝑥 𝑧 ) )
13 csbpredg ( 𝐴𝑉 𝐴 / 𝑥 Pred ( 𝑅 , 𝐷 , 𝑦 ) = Pred ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝐴 / 𝑥 𝑦 ) )
14 csbconstg ( 𝐴𝑉 𝐴 / 𝑥 𝑦 = 𝑦 )
15 predeq3 ( 𝐴 / 𝑥 𝑦 = 𝑦 → Pred ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝐴 / 𝑥 𝑦 ) = Pred ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝑦 ) )
16 14 15 syl ( 𝐴𝑉 → Pred ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝐴 / 𝑥 𝑦 ) = Pred ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝑦 ) )
17 13 16 eqtrd ( 𝐴𝑉 𝐴 / 𝑥 Pred ( 𝑅 , 𝐷 , 𝑦 ) = Pred ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝑦 ) )
18 17 8 sseq12d ( 𝐴𝑉 → ( 𝐴 / 𝑥 Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝐴 / 𝑥 𝑧 ↔ Pred ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝑦 ) ⊆ 𝑧 ) )
19 12 18 bitrd ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ] Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ↔ Pred ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝑦 ) ⊆ 𝑧 ) )
20 19 ralbidv ( 𝐴𝑉 → ( ∀ 𝑦𝑧 [ 𝐴 / 𝑥 ] Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ↔ ∀ 𝑦𝑧 Pred ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝑦 ) ⊆ 𝑧 ) )
21 11 20 bitrd ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ]𝑦𝑧 Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ↔ ∀ 𝑦𝑧 Pred ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝑦 ) ⊆ 𝑧 ) )
22 10 21 anbi12d ( 𝐴𝑉 → ( ( [ 𝐴 / 𝑥 ] 𝑧𝐷[ 𝐴 / 𝑥 ]𝑦𝑧 Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ) ↔ ( 𝑧 𝐴 / 𝑥 𝐷 ∧ ∀ 𝑦𝑧 Pred ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝑦 ) ⊆ 𝑧 ) ) )
23 6 22 bitrid ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ] ( 𝑧𝐷 ∧ ∀ 𝑦𝑧 Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ) ↔ ( 𝑧 𝐴 / 𝑥 𝐷 ∧ ∀ 𝑦𝑧 Pred ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝑦 ) ⊆ 𝑧 ) ) )
24 sbcralg ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ]𝑦𝑧 ( 𝑓𝑦 ) = ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) ↔ ∀ 𝑦𝑧 [ 𝐴 / 𝑥 ] ( 𝑓𝑦 ) = ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) ) )
25 sbceqg ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ] ( 𝑓𝑦 ) = ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) ↔ 𝐴 / 𝑥 ( 𝑓𝑦 ) = 𝐴 / 𝑥 ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) ) )
26 csbconstg ( 𝐴𝑉 𝐴 / 𝑥 ( 𝑓𝑦 ) = ( 𝑓𝑦 ) )
27 csbov123 𝐴 / 𝑥 ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) = ( 𝐴 / 𝑥 𝑦 𝐴 / 𝑥 𝐹 𝐴 / 𝑥 ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) )
28 csbres 𝐴 / 𝑥 ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) = ( 𝐴 / 𝑥 𝑓 𝐴 / 𝑥 Pred ( 𝑅 , 𝐷 , 𝑦 ) )
29 csbconstg ( 𝐴𝑉 𝐴 / 𝑥 𝑓 = 𝑓 )
30 29 17 reseq12d ( 𝐴𝑉 → ( 𝐴 / 𝑥 𝑓 𝐴 / 𝑥 Pred ( 𝑅 , 𝐷 , 𝑦 ) ) = ( 𝑓 ↾ Pred ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝑦 ) ) )
31 28 30 eqtrid ( 𝐴𝑉 𝐴 / 𝑥 ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) = ( 𝑓 ↾ Pred ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝑦 ) ) )
32 14 31 oveq12d ( 𝐴𝑉 → ( 𝐴 / 𝑥 𝑦 𝐴 / 𝑥 𝐹 𝐴 / 𝑥 ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) = ( 𝑦 𝐴 / 𝑥 𝐹 ( 𝑓 ↾ Pred ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝑦 ) ) ) )
33 27 32 eqtrid ( 𝐴𝑉 𝐴 / 𝑥 ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) = ( 𝑦 𝐴 / 𝑥 𝐹 ( 𝑓 ↾ Pred ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝑦 ) ) ) )
34 26 33 eqeq12d ( 𝐴𝑉 → ( 𝐴 / 𝑥 ( 𝑓𝑦 ) = 𝐴 / 𝑥 ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) ↔ ( 𝑓𝑦 ) = ( 𝑦 𝐴 / 𝑥 𝐹 ( 𝑓 ↾ Pred ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝑦 ) ) ) ) )
35 25 34 bitrd ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ] ( 𝑓𝑦 ) = ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) ↔ ( 𝑓𝑦 ) = ( 𝑦 𝐴 / 𝑥 𝐹 ( 𝑓 ↾ Pred ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝑦 ) ) ) ) )
36 35 ralbidv ( 𝐴𝑉 → ( ∀ 𝑦𝑧 [ 𝐴 / 𝑥 ] ( 𝑓𝑦 ) = ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) ↔ ∀ 𝑦𝑧 ( 𝑓𝑦 ) = ( 𝑦 𝐴 / 𝑥 𝐹 ( 𝑓 ↾ Pred ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝑦 ) ) ) ) )
37 24 36 bitrd ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ]𝑦𝑧 ( 𝑓𝑦 ) = ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) ↔ ∀ 𝑦𝑧 ( 𝑓𝑦 ) = ( 𝑦 𝐴 / 𝑥 𝐹 ( 𝑓 ↾ Pred ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝑦 ) ) ) ) )
38 5 23 37 3anbi123d ( 𝐴𝑉 → ( ( [ 𝐴 / 𝑥 ] 𝑓 Fn 𝑧[ 𝐴 / 𝑥 ] ( 𝑧𝐷 ∧ ∀ 𝑦𝑧 Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ [ 𝐴 / 𝑥 ]𝑦𝑧 ( 𝑓𝑦 ) = ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) ) ↔ ( 𝑓 Fn 𝑧 ∧ ( 𝑧 𝐴 / 𝑥 𝐷 ∧ ∀ 𝑦𝑧 Pred ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ ∀ 𝑦𝑧 ( 𝑓𝑦 ) = ( 𝑦 𝐴 / 𝑥 𝐹 ( 𝑓 ↾ Pred ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝑦 ) ) ) ) ) )
39 4 38 bitrid ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ] ( 𝑓 Fn 𝑧 ∧ ( 𝑧𝐷 ∧ ∀ 𝑦𝑧 Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ ∀ 𝑦𝑧 ( 𝑓𝑦 ) = ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) ) ↔ ( 𝑓 Fn 𝑧 ∧ ( 𝑧 𝐴 / 𝑥 𝐷 ∧ ∀ 𝑦𝑧 Pred ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ ∀ 𝑦𝑧 ( 𝑓𝑦 ) = ( 𝑦 𝐴 / 𝑥 𝐹 ( 𝑓 ↾ Pred ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝑦 ) ) ) ) ) )
40 39 exbidv ( 𝐴𝑉 → ( ∃ 𝑧 [ 𝐴 / 𝑥 ] ( 𝑓 Fn 𝑧 ∧ ( 𝑧𝐷 ∧ ∀ 𝑦𝑧 Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ ∀ 𝑦𝑧 ( 𝑓𝑦 ) = ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) ) ↔ ∃ 𝑧 ( 𝑓 Fn 𝑧 ∧ ( 𝑧 𝐴 / 𝑥 𝐷 ∧ ∀ 𝑦𝑧 Pred ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ ∀ 𝑦𝑧 ( 𝑓𝑦 ) = ( 𝑦 𝐴 / 𝑥 𝐹 ( 𝑓 ↾ Pred ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝑦 ) ) ) ) ) )
41 3 40 bitrid ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ]𝑧 ( 𝑓 Fn 𝑧 ∧ ( 𝑧𝐷 ∧ ∀ 𝑦𝑧 Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ ∀ 𝑦𝑧 ( 𝑓𝑦 ) = ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) ) ↔ ∃ 𝑧 ( 𝑓 Fn 𝑧 ∧ ( 𝑧 𝐴 / 𝑥 𝐷 ∧ ∀ 𝑦𝑧 Pred ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ ∀ 𝑦𝑧 ( 𝑓𝑦 ) = ( 𝑦 𝐴 / 𝑥 𝐹 ( 𝑓 ↾ Pred ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝑦 ) ) ) ) ) )
42 41 abbidv ( 𝐴𝑉 → { 𝑓[ 𝐴 / 𝑥 ]𝑧 ( 𝑓 Fn 𝑧 ∧ ( 𝑧𝐷 ∧ ∀ 𝑦𝑧 Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ ∀ 𝑦𝑧 ( 𝑓𝑦 ) = ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) ) } = { 𝑓 ∣ ∃ 𝑧 ( 𝑓 Fn 𝑧 ∧ ( 𝑧 𝐴 / 𝑥 𝐷 ∧ ∀ 𝑦𝑧 Pred ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ ∀ 𝑦𝑧 ( 𝑓𝑦 ) = ( 𝑦 𝐴 / 𝑥 𝐹 ( 𝑓 ↾ Pred ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝑦 ) ) ) ) } )
43 2 42 eqtrid ( 𝐴𝑉 𝐴 / 𝑥 { 𝑓 ∣ ∃ 𝑧 ( 𝑓 Fn 𝑧 ∧ ( 𝑧𝐷 ∧ ∀ 𝑦𝑧 Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ ∀ 𝑦𝑧 ( 𝑓𝑦 ) = ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) ) } = { 𝑓 ∣ ∃ 𝑧 ( 𝑓 Fn 𝑧 ∧ ( 𝑧 𝐴 / 𝑥 𝐷 ∧ ∀ 𝑦𝑧 Pred ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ ∀ 𝑦𝑧 ( 𝑓𝑦 ) = ( 𝑦 𝐴 / 𝑥 𝐹 ( 𝑓 ↾ Pred ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝑦 ) ) ) ) } )
44 43 unieqd ( 𝐴𝑉 𝐴 / 𝑥 { 𝑓 ∣ ∃ 𝑧 ( 𝑓 Fn 𝑧 ∧ ( 𝑧𝐷 ∧ ∀ 𝑦𝑧 Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ ∀ 𝑦𝑧 ( 𝑓𝑦 ) = ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) ) } = { 𝑓 ∣ ∃ 𝑧 ( 𝑓 Fn 𝑧 ∧ ( 𝑧 𝐴 / 𝑥 𝐷 ∧ ∀ 𝑦𝑧 Pred ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ ∀ 𝑦𝑧 ( 𝑓𝑦 ) = ( 𝑦 𝐴 / 𝑥 𝐹 ( 𝑓 ↾ Pred ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝑦 ) ) ) ) } )
45 1 44 eqtrid ( 𝐴𝑉 𝐴 / 𝑥 { 𝑓 ∣ ∃ 𝑧 ( 𝑓 Fn 𝑧 ∧ ( 𝑧𝐷 ∧ ∀ 𝑦𝑧 Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ ∀ 𝑦𝑧 ( 𝑓𝑦 ) = ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) ) } = { 𝑓 ∣ ∃ 𝑧 ( 𝑓 Fn 𝑧 ∧ ( 𝑧 𝐴 / 𝑥 𝐷 ∧ ∀ 𝑦𝑧 Pred ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ ∀ 𝑦𝑧 ( 𝑓𝑦 ) = ( 𝑦 𝐴 / 𝑥 𝐹 ( 𝑓 ↾ Pred ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝑦 ) ) ) ) } )
46 df-frecs frecs ( 𝑅 , 𝐷 , 𝐹 ) = { 𝑓 ∣ ∃ 𝑧 ( 𝑓 Fn 𝑧 ∧ ( 𝑧𝐷 ∧ ∀ 𝑦𝑧 Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ ∀ 𝑦𝑧 ( 𝑓𝑦 ) = ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) ) }
47 46 csbeq2i 𝐴 / 𝑥 frecs ( 𝑅 , 𝐷 , 𝐹 ) = 𝐴 / 𝑥 { 𝑓 ∣ ∃ 𝑧 ( 𝑓 Fn 𝑧 ∧ ( 𝑧𝐷 ∧ ∀ 𝑦𝑧 Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ ∀ 𝑦𝑧 ( 𝑓𝑦 ) = ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) ) }
48 df-frecs frecs ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝐴 / 𝑥 𝐹 ) = { 𝑓 ∣ ∃ 𝑧 ( 𝑓 Fn 𝑧 ∧ ( 𝑧 𝐴 / 𝑥 𝐷 ∧ ∀ 𝑦𝑧 Pred ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ ∀ 𝑦𝑧 ( 𝑓𝑦 ) = ( 𝑦 𝐴 / 𝑥 𝐹 ( 𝑓 ↾ Pred ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝑦 ) ) ) ) }
49 45 47 48 3eqtr4g ( 𝐴𝑉 𝐴 / 𝑥 frecs ( 𝑅 , 𝐷 , 𝐹 ) = frecs ( 𝐴 / 𝑥 𝑅 , 𝐴 / 𝑥 𝐷 , 𝐴 / 𝑥 𝐹 ) )