| Step | Hyp | Ref | Expression | 
						
							| 1 |  | csbuni | ⊢ ⦋ 𝐴  /  𝑥 ⦌ ∪  { 𝑓  ∣  ∃ 𝑧 ( 𝑓  Fn  𝑧  ∧  ( 𝑧  ⊆  𝐷  ∧  ∀ 𝑦  ∈  𝑧 Pred ( 𝑅 ,  𝐷 ,  𝑦 )  ⊆  𝑧 )  ∧  ∀ 𝑦  ∈  𝑧 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐹 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐷 ,  𝑦 ) ) ) ) }  =  ∪  ⦋ 𝐴  /  𝑥 ⦌ { 𝑓  ∣  ∃ 𝑧 ( 𝑓  Fn  𝑧  ∧  ( 𝑧  ⊆  𝐷  ∧  ∀ 𝑦  ∈  𝑧 Pred ( 𝑅 ,  𝐷 ,  𝑦 )  ⊆  𝑧 )  ∧  ∀ 𝑦  ∈  𝑧 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐹 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐷 ,  𝑦 ) ) ) ) } | 
						
							| 2 |  | csbab | ⊢ ⦋ 𝐴  /  𝑥 ⦌ { 𝑓  ∣  ∃ 𝑧 ( 𝑓  Fn  𝑧  ∧  ( 𝑧  ⊆  𝐷  ∧  ∀ 𝑦  ∈  𝑧 Pred ( 𝑅 ,  𝐷 ,  𝑦 )  ⊆  𝑧 )  ∧  ∀ 𝑦  ∈  𝑧 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐹 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐷 ,  𝑦 ) ) ) ) }  =  { 𝑓  ∣  [ 𝐴  /  𝑥 ] ∃ 𝑧 ( 𝑓  Fn  𝑧  ∧  ( 𝑧  ⊆  𝐷  ∧  ∀ 𝑦  ∈  𝑧 Pred ( 𝑅 ,  𝐷 ,  𝑦 )  ⊆  𝑧 )  ∧  ∀ 𝑦  ∈  𝑧 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐹 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐷 ,  𝑦 ) ) ) ) } | 
						
							| 3 |  | sbcex2 | ⊢ ( [ 𝐴  /  𝑥 ] ∃ 𝑧 ( 𝑓  Fn  𝑧  ∧  ( 𝑧  ⊆  𝐷  ∧  ∀ 𝑦  ∈  𝑧 Pred ( 𝑅 ,  𝐷 ,  𝑦 )  ⊆  𝑧 )  ∧  ∀ 𝑦  ∈  𝑧 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐹 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐷 ,  𝑦 ) ) ) )  ↔  ∃ 𝑧 [ 𝐴  /  𝑥 ] ( 𝑓  Fn  𝑧  ∧  ( 𝑧  ⊆  𝐷  ∧  ∀ 𝑦  ∈  𝑧 Pred ( 𝑅 ,  𝐷 ,  𝑦 )  ⊆  𝑧 )  ∧  ∀ 𝑦  ∈  𝑧 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐹 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐷 ,  𝑦 ) ) ) ) ) | 
						
							| 4 |  | sbc3an | ⊢ ( [ 𝐴  /  𝑥 ] ( 𝑓  Fn  𝑧  ∧  ( 𝑧  ⊆  𝐷  ∧  ∀ 𝑦  ∈  𝑧 Pred ( 𝑅 ,  𝐷 ,  𝑦 )  ⊆  𝑧 )  ∧  ∀ 𝑦  ∈  𝑧 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐹 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐷 ,  𝑦 ) ) ) )  ↔  ( [ 𝐴  /  𝑥 ] 𝑓  Fn  𝑧  ∧  [ 𝐴  /  𝑥 ] ( 𝑧  ⊆  𝐷  ∧  ∀ 𝑦  ∈  𝑧 Pred ( 𝑅 ,  𝐷 ,  𝑦 )  ⊆  𝑧 )  ∧  [ 𝐴  /  𝑥 ] ∀ 𝑦  ∈  𝑧 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐹 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐷 ,  𝑦 ) ) ) ) ) | 
						
							| 5 |  | sbcg | ⊢ ( 𝐴  ∈  𝑉  →  ( [ 𝐴  /  𝑥 ] 𝑓  Fn  𝑧  ↔  𝑓  Fn  𝑧 ) ) | 
						
							| 6 |  | sbcan | ⊢ ( [ 𝐴  /  𝑥 ] ( 𝑧  ⊆  𝐷  ∧  ∀ 𝑦  ∈  𝑧 Pred ( 𝑅 ,  𝐷 ,  𝑦 )  ⊆  𝑧 )  ↔  ( [ 𝐴  /  𝑥 ] 𝑧  ⊆  𝐷  ∧  [ 𝐴  /  𝑥 ] ∀ 𝑦  ∈  𝑧 Pred ( 𝑅 ,  𝐷 ,  𝑦 )  ⊆  𝑧 ) ) | 
						
							| 7 |  | sbcssg | ⊢ ( 𝐴  ∈  𝑉  →  ( [ 𝐴  /  𝑥 ] 𝑧  ⊆  𝐷  ↔  ⦋ 𝐴  /  𝑥 ⦌ 𝑧  ⊆  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ) ) | 
						
							| 8 |  | csbconstg | ⊢ ( 𝐴  ∈  𝑉  →  ⦋ 𝐴  /  𝑥 ⦌ 𝑧  =  𝑧 ) | 
						
							| 9 | 8 | sseq1d | ⊢ ( 𝐴  ∈  𝑉  →  ( ⦋ 𝐴  /  𝑥 ⦌ 𝑧  ⊆  ⦋ 𝐴  /  𝑥 ⦌ 𝐷  ↔  𝑧  ⊆  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ) ) | 
						
							| 10 | 7 9 | bitrd | ⊢ ( 𝐴  ∈  𝑉  →  ( [ 𝐴  /  𝑥 ] 𝑧  ⊆  𝐷  ↔  𝑧  ⊆  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ) ) | 
						
							| 11 |  | sbcralg | ⊢ ( 𝐴  ∈  𝑉  →  ( [ 𝐴  /  𝑥 ] ∀ 𝑦  ∈  𝑧 Pred ( 𝑅 ,  𝐷 ,  𝑦 )  ⊆  𝑧  ↔  ∀ 𝑦  ∈  𝑧 [ 𝐴  /  𝑥 ] Pred ( 𝑅 ,  𝐷 ,  𝑦 )  ⊆  𝑧 ) ) | 
						
							| 12 |  | sbcssg | ⊢ ( 𝐴  ∈  𝑉  →  ( [ 𝐴  /  𝑥 ] Pred ( 𝑅 ,  𝐷 ,  𝑦 )  ⊆  𝑧  ↔  ⦋ 𝐴  /  𝑥 ⦌ Pred ( 𝑅 ,  𝐷 ,  𝑦 )  ⊆  ⦋ 𝐴  /  𝑥 ⦌ 𝑧 ) ) | 
						
							| 13 |  | csbpredg | ⊢ ( 𝐴  ∈  𝑉  →  ⦋ 𝐴  /  𝑥 ⦌ Pred ( 𝑅 ,  𝐷 ,  𝑦 )  =  Pred ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝑦 ) ) | 
						
							| 14 |  | csbconstg | ⊢ ( 𝐴  ∈  𝑉  →  ⦋ 𝐴  /  𝑥 ⦌ 𝑦  =  𝑦 ) | 
						
							| 15 |  | predeq3 | ⊢ ( ⦋ 𝐴  /  𝑥 ⦌ 𝑦  =  𝑦  →  Pred ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝑦 )  =  Pred ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  𝑦 ) ) | 
						
							| 16 | 14 15 | syl | ⊢ ( 𝐴  ∈  𝑉  →  Pred ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝑦 )  =  Pred ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  𝑦 ) ) | 
						
							| 17 | 13 16 | eqtrd | ⊢ ( 𝐴  ∈  𝑉  →  ⦋ 𝐴  /  𝑥 ⦌ Pred ( 𝑅 ,  𝐷 ,  𝑦 )  =  Pred ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  𝑦 ) ) | 
						
							| 18 | 17 8 | sseq12d | ⊢ ( 𝐴  ∈  𝑉  →  ( ⦋ 𝐴  /  𝑥 ⦌ Pred ( 𝑅 ,  𝐷 ,  𝑦 )  ⊆  ⦋ 𝐴  /  𝑥 ⦌ 𝑧  ↔  Pred ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  𝑦 )  ⊆  𝑧 ) ) | 
						
							| 19 | 12 18 | bitrd | ⊢ ( 𝐴  ∈  𝑉  →  ( [ 𝐴  /  𝑥 ] Pred ( 𝑅 ,  𝐷 ,  𝑦 )  ⊆  𝑧  ↔  Pred ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  𝑦 )  ⊆  𝑧 ) ) | 
						
							| 20 | 19 | ralbidv | ⊢ ( 𝐴  ∈  𝑉  →  ( ∀ 𝑦  ∈  𝑧 [ 𝐴  /  𝑥 ] Pred ( 𝑅 ,  𝐷 ,  𝑦 )  ⊆  𝑧  ↔  ∀ 𝑦  ∈  𝑧 Pred ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  𝑦 )  ⊆  𝑧 ) ) | 
						
							| 21 | 11 20 | bitrd | ⊢ ( 𝐴  ∈  𝑉  →  ( [ 𝐴  /  𝑥 ] ∀ 𝑦  ∈  𝑧 Pred ( 𝑅 ,  𝐷 ,  𝑦 )  ⊆  𝑧  ↔  ∀ 𝑦  ∈  𝑧 Pred ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  𝑦 )  ⊆  𝑧 ) ) | 
						
							| 22 | 10 21 | anbi12d | ⊢ ( 𝐴  ∈  𝑉  →  ( ( [ 𝐴  /  𝑥 ] 𝑧  ⊆  𝐷  ∧  [ 𝐴  /  𝑥 ] ∀ 𝑦  ∈  𝑧 Pred ( 𝑅 ,  𝐷 ,  𝑦 )  ⊆  𝑧 )  ↔  ( 𝑧  ⊆  ⦋ 𝐴  /  𝑥 ⦌ 𝐷  ∧  ∀ 𝑦  ∈  𝑧 Pred ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  𝑦 )  ⊆  𝑧 ) ) ) | 
						
							| 23 | 6 22 | bitrid | ⊢ ( 𝐴  ∈  𝑉  →  ( [ 𝐴  /  𝑥 ] ( 𝑧  ⊆  𝐷  ∧  ∀ 𝑦  ∈  𝑧 Pred ( 𝑅 ,  𝐷 ,  𝑦 )  ⊆  𝑧 )  ↔  ( 𝑧  ⊆  ⦋ 𝐴  /  𝑥 ⦌ 𝐷  ∧  ∀ 𝑦  ∈  𝑧 Pred ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  𝑦 )  ⊆  𝑧 ) ) ) | 
						
							| 24 |  | sbcralg | ⊢ ( 𝐴  ∈  𝑉  →  ( [ 𝐴  /  𝑥 ] ∀ 𝑦  ∈  𝑧 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐹 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐷 ,  𝑦 ) ) )  ↔  ∀ 𝑦  ∈  𝑧 [ 𝐴  /  𝑥 ] ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐹 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐷 ,  𝑦 ) ) ) ) ) | 
						
							| 25 |  | sbceqg | ⊢ ( 𝐴  ∈  𝑉  →  ( [ 𝐴  /  𝑥 ] ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐹 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐷 ,  𝑦 ) ) )  ↔  ⦋ 𝐴  /  𝑥 ⦌ ( 𝑓 ‘ 𝑦 )  =  ⦋ 𝐴  /  𝑥 ⦌ ( 𝑦 𝐹 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐷 ,  𝑦 ) ) ) ) ) | 
						
							| 26 |  | csbconstg | ⊢ ( 𝐴  ∈  𝑉  →  ⦋ 𝐴  /  𝑥 ⦌ ( 𝑓 ‘ 𝑦 )  =  ( 𝑓 ‘ 𝑦 ) ) | 
						
							| 27 |  | csbov123 | ⊢ ⦋ 𝐴  /  𝑥 ⦌ ( 𝑦 𝐹 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐷 ,  𝑦 ) ) )  =  ( ⦋ 𝐴  /  𝑥 ⦌ 𝑦 ⦋ 𝐴  /  𝑥 ⦌ 𝐹 ⦋ 𝐴  /  𝑥 ⦌ ( 𝑓  ↾  Pred ( 𝑅 ,  𝐷 ,  𝑦 ) ) ) | 
						
							| 28 |  | csbres | ⊢ ⦋ 𝐴  /  𝑥 ⦌ ( 𝑓  ↾  Pred ( 𝑅 ,  𝐷 ,  𝑦 ) )  =  ( ⦋ 𝐴  /  𝑥 ⦌ 𝑓  ↾  ⦋ 𝐴  /  𝑥 ⦌ Pred ( 𝑅 ,  𝐷 ,  𝑦 ) ) | 
						
							| 29 |  | csbconstg | ⊢ ( 𝐴  ∈  𝑉  →  ⦋ 𝐴  /  𝑥 ⦌ 𝑓  =  𝑓 ) | 
						
							| 30 | 29 17 | reseq12d | ⊢ ( 𝐴  ∈  𝑉  →  ( ⦋ 𝐴  /  𝑥 ⦌ 𝑓  ↾  ⦋ 𝐴  /  𝑥 ⦌ Pred ( 𝑅 ,  𝐷 ,  𝑦 ) )  =  ( 𝑓  ↾  Pred ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  𝑦 ) ) ) | 
						
							| 31 | 28 30 | eqtrid | ⊢ ( 𝐴  ∈  𝑉  →  ⦋ 𝐴  /  𝑥 ⦌ ( 𝑓  ↾  Pred ( 𝑅 ,  𝐷 ,  𝑦 ) )  =  ( 𝑓  ↾  Pred ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  𝑦 ) ) ) | 
						
							| 32 | 14 31 | oveq12d | ⊢ ( 𝐴  ∈  𝑉  →  ( ⦋ 𝐴  /  𝑥 ⦌ 𝑦 ⦋ 𝐴  /  𝑥 ⦌ 𝐹 ⦋ 𝐴  /  𝑥 ⦌ ( 𝑓  ↾  Pred ( 𝑅 ,  𝐷 ,  𝑦 ) ) )  =  ( 𝑦 ⦋ 𝐴  /  𝑥 ⦌ 𝐹 ( 𝑓  ↾  Pred ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  𝑦 ) ) ) ) | 
						
							| 33 | 27 32 | eqtrid | ⊢ ( 𝐴  ∈  𝑉  →  ⦋ 𝐴  /  𝑥 ⦌ ( 𝑦 𝐹 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐷 ,  𝑦 ) ) )  =  ( 𝑦 ⦋ 𝐴  /  𝑥 ⦌ 𝐹 ( 𝑓  ↾  Pred ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  𝑦 ) ) ) ) | 
						
							| 34 | 26 33 | eqeq12d | ⊢ ( 𝐴  ∈  𝑉  →  ( ⦋ 𝐴  /  𝑥 ⦌ ( 𝑓 ‘ 𝑦 )  =  ⦋ 𝐴  /  𝑥 ⦌ ( 𝑦 𝐹 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐷 ,  𝑦 ) ) )  ↔  ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 ⦋ 𝐴  /  𝑥 ⦌ 𝐹 ( 𝑓  ↾  Pred ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  𝑦 ) ) ) ) ) | 
						
							| 35 | 25 34 | bitrd | ⊢ ( 𝐴  ∈  𝑉  →  ( [ 𝐴  /  𝑥 ] ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐹 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐷 ,  𝑦 ) ) )  ↔  ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 ⦋ 𝐴  /  𝑥 ⦌ 𝐹 ( 𝑓  ↾  Pred ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  𝑦 ) ) ) ) ) | 
						
							| 36 | 35 | ralbidv | ⊢ ( 𝐴  ∈  𝑉  →  ( ∀ 𝑦  ∈  𝑧 [ 𝐴  /  𝑥 ] ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐹 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐷 ,  𝑦 ) ) )  ↔  ∀ 𝑦  ∈  𝑧 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 ⦋ 𝐴  /  𝑥 ⦌ 𝐹 ( 𝑓  ↾  Pred ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  𝑦 ) ) ) ) ) | 
						
							| 37 | 24 36 | bitrd | ⊢ ( 𝐴  ∈  𝑉  →  ( [ 𝐴  /  𝑥 ] ∀ 𝑦  ∈  𝑧 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐹 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐷 ,  𝑦 ) ) )  ↔  ∀ 𝑦  ∈  𝑧 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 ⦋ 𝐴  /  𝑥 ⦌ 𝐹 ( 𝑓  ↾  Pred ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  𝑦 ) ) ) ) ) | 
						
							| 38 | 5 23 37 | 3anbi123d | ⊢ ( 𝐴  ∈  𝑉  →  ( ( [ 𝐴  /  𝑥 ] 𝑓  Fn  𝑧  ∧  [ 𝐴  /  𝑥 ] ( 𝑧  ⊆  𝐷  ∧  ∀ 𝑦  ∈  𝑧 Pred ( 𝑅 ,  𝐷 ,  𝑦 )  ⊆  𝑧 )  ∧  [ 𝐴  /  𝑥 ] ∀ 𝑦  ∈  𝑧 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐹 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐷 ,  𝑦 ) ) ) )  ↔  ( 𝑓  Fn  𝑧  ∧  ( 𝑧  ⊆  ⦋ 𝐴  /  𝑥 ⦌ 𝐷  ∧  ∀ 𝑦  ∈  𝑧 Pred ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  𝑦 )  ⊆  𝑧 )  ∧  ∀ 𝑦  ∈  𝑧 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 ⦋ 𝐴  /  𝑥 ⦌ 𝐹 ( 𝑓  ↾  Pred ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  𝑦 ) ) ) ) ) ) | 
						
							| 39 | 4 38 | bitrid | ⊢ ( 𝐴  ∈  𝑉  →  ( [ 𝐴  /  𝑥 ] ( 𝑓  Fn  𝑧  ∧  ( 𝑧  ⊆  𝐷  ∧  ∀ 𝑦  ∈  𝑧 Pred ( 𝑅 ,  𝐷 ,  𝑦 )  ⊆  𝑧 )  ∧  ∀ 𝑦  ∈  𝑧 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐹 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐷 ,  𝑦 ) ) ) )  ↔  ( 𝑓  Fn  𝑧  ∧  ( 𝑧  ⊆  ⦋ 𝐴  /  𝑥 ⦌ 𝐷  ∧  ∀ 𝑦  ∈  𝑧 Pred ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  𝑦 )  ⊆  𝑧 )  ∧  ∀ 𝑦  ∈  𝑧 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 ⦋ 𝐴  /  𝑥 ⦌ 𝐹 ( 𝑓  ↾  Pred ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  𝑦 ) ) ) ) ) ) | 
						
							| 40 | 39 | exbidv | ⊢ ( 𝐴  ∈  𝑉  →  ( ∃ 𝑧 [ 𝐴  /  𝑥 ] ( 𝑓  Fn  𝑧  ∧  ( 𝑧  ⊆  𝐷  ∧  ∀ 𝑦  ∈  𝑧 Pred ( 𝑅 ,  𝐷 ,  𝑦 )  ⊆  𝑧 )  ∧  ∀ 𝑦  ∈  𝑧 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐹 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐷 ,  𝑦 ) ) ) )  ↔  ∃ 𝑧 ( 𝑓  Fn  𝑧  ∧  ( 𝑧  ⊆  ⦋ 𝐴  /  𝑥 ⦌ 𝐷  ∧  ∀ 𝑦  ∈  𝑧 Pred ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  𝑦 )  ⊆  𝑧 )  ∧  ∀ 𝑦  ∈  𝑧 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 ⦋ 𝐴  /  𝑥 ⦌ 𝐹 ( 𝑓  ↾  Pred ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  𝑦 ) ) ) ) ) ) | 
						
							| 41 | 3 40 | bitrid | ⊢ ( 𝐴  ∈  𝑉  →  ( [ 𝐴  /  𝑥 ] ∃ 𝑧 ( 𝑓  Fn  𝑧  ∧  ( 𝑧  ⊆  𝐷  ∧  ∀ 𝑦  ∈  𝑧 Pred ( 𝑅 ,  𝐷 ,  𝑦 )  ⊆  𝑧 )  ∧  ∀ 𝑦  ∈  𝑧 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐹 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐷 ,  𝑦 ) ) ) )  ↔  ∃ 𝑧 ( 𝑓  Fn  𝑧  ∧  ( 𝑧  ⊆  ⦋ 𝐴  /  𝑥 ⦌ 𝐷  ∧  ∀ 𝑦  ∈  𝑧 Pred ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  𝑦 )  ⊆  𝑧 )  ∧  ∀ 𝑦  ∈  𝑧 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 ⦋ 𝐴  /  𝑥 ⦌ 𝐹 ( 𝑓  ↾  Pred ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  𝑦 ) ) ) ) ) ) | 
						
							| 42 | 41 | abbidv | ⊢ ( 𝐴  ∈  𝑉  →  { 𝑓  ∣  [ 𝐴  /  𝑥 ] ∃ 𝑧 ( 𝑓  Fn  𝑧  ∧  ( 𝑧  ⊆  𝐷  ∧  ∀ 𝑦  ∈  𝑧 Pred ( 𝑅 ,  𝐷 ,  𝑦 )  ⊆  𝑧 )  ∧  ∀ 𝑦  ∈  𝑧 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐹 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐷 ,  𝑦 ) ) ) ) }  =  { 𝑓  ∣  ∃ 𝑧 ( 𝑓  Fn  𝑧  ∧  ( 𝑧  ⊆  ⦋ 𝐴  /  𝑥 ⦌ 𝐷  ∧  ∀ 𝑦  ∈  𝑧 Pred ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  𝑦 )  ⊆  𝑧 )  ∧  ∀ 𝑦  ∈  𝑧 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 ⦋ 𝐴  /  𝑥 ⦌ 𝐹 ( 𝑓  ↾  Pred ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  𝑦 ) ) ) ) } ) | 
						
							| 43 | 2 42 | eqtrid | ⊢ ( 𝐴  ∈  𝑉  →  ⦋ 𝐴  /  𝑥 ⦌ { 𝑓  ∣  ∃ 𝑧 ( 𝑓  Fn  𝑧  ∧  ( 𝑧  ⊆  𝐷  ∧  ∀ 𝑦  ∈  𝑧 Pred ( 𝑅 ,  𝐷 ,  𝑦 )  ⊆  𝑧 )  ∧  ∀ 𝑦  ∈  𝑧 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐹 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐷 ,  𝑦 ) ) ) ) }  =  { 𝑓  ∣  ∃ 𝑧 ( 𝑓  Fn  𝑧  ∧  ( 𝑧  ⊆  ⦋ 𝐴  /  𝑥 ⦌ 𝐷  ∧  ∀ 𝑦  ∈  𝑧 Pred ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  𝑦 )  ⊆  𝑧 )  ∧  ∀ 𝑦  ∈  𝑧 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 ⦋ 𝐴  /  𝑥 ⦌ 𝐹 ( 𝑓  ↾  Pred ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  𝑦 ) ) ) ) } ) | 
						
							| 44 | 43 | unieqd | ⊢ ( 𝐴  ∈  𝑉  →  ∪  ⦋ 𝐴  /  𝑥 ⦌ { 𝑓  ∣  ∃ 𝑧 ( 𝑓  Fn  𝑧  ∧  ( 𝑧  ⊆  𝐷  ∧  ∀ 𝑦  ∈  𝑧 Pred ( 𝑅 ,  𝐷 ,  𝑦 )  ⊆  𝑧 )  ∧  ∀ 𝑦  ∈  𝑧 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐹 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐷 ,  𝑦 ) ) ) ) }  =  ∪  { 𝑓  ∣  ∃ 𝑧 ( 𝑓  Fn  𝑧  ∧  ( 𝑧  ⊆  ⦋ 𝐴  /  𝑥 ⦌ 𝐷  ∧  ∀ 𝑦  ∈  𝑧 Pred ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  𝑦 )  ⊆  𝑧 )  ∧  ∀ 𝑦  ∈  𝑧 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 ⦋ 𝐴  /  𝑥 ⦌ 𝐹 ( 𝑓  ↾  Pred ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  𝑦 ) ) ) ) } ) | 
						
							| 45 | 1 44 | eqtrid | ⊢ ( 𝐴  ∈  𝑉  →  ⦋ 𝐴  /  𝑥 ⦌ ∪  { 𝑓  ∣  ∃ 𝑧 ( 𝑓  Fn  𝑧  ∧  ( 𝑧  ⊆  𝐷  ∧  ∀ 𝑦  ∈  𝑧 Pred ( 𝑅 ,  𝐷 ,  𝑦 )  ⊆  𝑧 )  ∧  ∀ 𝑦  ∈  𝑧 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐹 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐷 ,  𝑦 ) ) ) ) }  =  ∪  { 𝑓  ∣  ∃ 𝑧 ( 𝑓  Fn  𝑧  ∧  ( 𝑧  ⊆  ⦋ 𝐴  /  𝑥 ⦌ 𝐷  ∧  ∀ 𝑦  ∈  𝑧 Pred ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  𝑦 )  ⊆  𝑧 )  ∧  ∀ 𝑦  ∈  𝑧 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 ⦋ 𝐴  /  𝑥 ⦌ 𝐹 ( 𝑓  ↾  Pred ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  𝑦 ) ) ) ) } ) | 
						
							| 46 |  | df-frecs | ⊢ frecs ( 𝑅 ,  𝐷 ,  𝐹 )  =  ∪  { 𝑓  ∣  ∃ 𝑧 ( 𝑓  Fn  𝑧  ∧  ( 𝑧  ⊆  𝐷  ∧  ∀ 𝑦  ∈  𝑧 Pred ( 𝑅 ,  𝐷 ,  𝑦 )  ⊆  𝑧 )  ∧  ∀ 𝑦  ∈  𝑧 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐹 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐷 ,  𝑦 ) ) ) ) } | 
						
							| 47 | 46 | csbeq2i | ⊢ ⦋ 𝐴  /  𝑥 ⦌ frecs ( 𝑅 ,  𝐷 ,  𝐹 )  =  ⦋ 𝐴  /  𝑥 ⦌ ∪  { 𝑓  ∣  ∃ 𝑧 ( 𝑓  Fn  𝑧  ∧  ( 𝑧  ⊆  𝐷  ∧  ∀ 𝑦  ∈  𝑧 Pred ( 𝑅 ,  𝐷 ,  𝑦 )  ⊆  𝑧 )  ∧  ∀ 𝑦  ∈  𝑧 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 𝐹 ( 𝑓  ↾  Pred ( 𝑅 ,  𝐷 ,  𝑦 ) ) ) ) } | 
						
							| 48 |  | df-frecs | ⊢ frecs ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐹 )  =  ∪  { 𝑓  ∣  ∃ 𝑧 ( 𝑓  Fn  𝑧  ∧  ( 𝑧  ⊆  ⦋ 𝐴  /  𝑥 ⦌ 𝐷  ∧  ∀ 𝑦  ∈  𝑧 Pred ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  𝑦 )  ⊆  𝑧 )  ∧  ∀ 𝑦  ∈  𝑧 ( 𝑓 ‘ 𝑦 )  =  ( 𝑦 ⦋ 𝐴  /  𝑥 ⦌ 𝐹 ( 𝑓  ↾  Pred ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  𝑦 ) ) ) ) } | 
						
							| 49 | 45 47 48 | 3eqtr4g | ⊢ ( 𝐴  ∈  𝑉  →  ⦋ 𝐴  /  𝑥 ⦌ frecs ( 𝑅 ,  𝐷 ,  𝐹 )  =  frecs ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐹 ) ) |