Step |
Hyp |
Ref |
Expression |
1 |
|
csbuni |
⊢ ⦋ 𝐴 / 𝑥 ⦌ ∪ { 𝑓 ∣ ∃ 𝑧 ( 𝑓 Fn 𝑧 ∧ ( 𝑧 ⊆ 𝐷 ∧ ∀ 𝑦 ∈ 𝑧 Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ ∀ 𝑦 ∈ 𝑧 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) ) } = ∪ ⦋ 𝐴 / 𝑥 ⦌ { 𝑓 ∣ ∃ 𝑧 ( 𝑓 Fn 𝑧 ∧ ( 𝑧 ⊆ 𝐷 ∧ ∀ 𝑦 ∈ 𝑧 Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ ∀ 𝑦 ∈ 𝑧 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) ) } |
2 |
|
csbab |
⊢ ⦋ 𝐴 / 𝑥 ⦌ { 𝑓 ∣ ∃ 𝑧 ( 𝑓 Fn 𝑧 ∧ ( 𝑧 ⊆ 𝐷 ∧ ∀ 𝑦 ∈ 𝑧 Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ ∀ 𝑦 ∈ 𝑧 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) ) } = { 𝑓 ∣ [ 𝐴 / 𝑥 ] ∃ 𝑧 ( 𝑓 Fn 𝑧 ∧ ( 𝑧 ⊆ 𝐷 ∧ ∀ 𝑦 ∈ 𝑧 Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ ∀ 𝑦 ∈ 𝑧 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) ) } |
3 |
|
sbcex2 |
⊢ ( [ 𝐴 / 𝑥 ] ∃ 𝑧 ( 𝑓 Fn 𝑧 ∧ ( 𝑧 ⊆ 𝐷 ∧ ∀ 𝑦 ∈ 𝑧 Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ ∀ 𝑦 ∈ 𝑧 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) ) ↔ ∃ 𝑧 [ 𝐴 / 𝑥 ] ( 𝑓 Fn 𝑧 ∧ ( 𝑧 ⊆ 𝐷 ∧ ∀ 𝑦 ∈ 𝑧 Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ ∀ 𝑦 ∈ 𝑧 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) ) ) |
4 |
|
sbc3an |
⊢ ( [ 𝐴 / 𝑥 ] ( 𝑓 Fn 𝑧 ∧ ( 𝑧 ⊆ 𝐷 ∧ ∀ 𝑦 ∈ 𝑧 Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ ∀ 𝑦 ∈ 𝑧 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) ) ↔ ( [ 𝐴 / 𝑥 ] 𝑓 Fn 𝑧 ∧ [ 𝐴 / 𝑥 ] ( 𝑧 ⊆ 𝐷 ∧ ∀ 𝑦 ∈ 𝑧 Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ [ 𝐴 / 𝑥 ] ∀ 𝑦 ∈ 𝑧 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) ) ) |
5 |
|
sbcg |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] 𝑓 Fn 𝑧 ↔ 𝑓 Fn 𝑧 ) ) |
6 |
|
sbcan |
⊢ ( [ 𝐴 / 𝑥 ] ( 𝑧 ⊆ 𝐷 ∧ ∀ 𝑦 ∈ 𝑧 Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ) ↔ ( [ 𝐴 / 𝑥 ] 𝑧 ⊆ 𝐷 ∧ [ 𝐴 / 𝑥 ] ∀ 𝑦 ∈ 𝑧 Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ) ) |
7 |
|
sbcssg |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] 𝑧 ⊆ 𝐷 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝑧 ⊆ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) ) |
8 |
|
csbconstg |
⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ 𝑧 = 𝑧 ) |
9 |
8
|
sseq1d |
⊢ ( 𝐴 ∈ 𝑉 → ( ⦋ 𝐴 / 𝑥 ⦌ 𝑧 ⊆ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ↔ 𝑧 ⊆ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) ) |
10 |
7 9
|
bitrd |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] 𝑧 ⊆ 𝐷 ↔ 𝑧 ⊆ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) ) |
11 |
|
sbcralg |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] ∀ 𝑦 ∈ 𝑧 Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ↔ ∀ 𝑦 ∈ 𝑧 [ 𝐴 / 𝑥 ] Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ) ) |
12 |
|
sbcssg |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ↔ ⦋ 𝐴 / 𝑥 ⦌ Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ ⦋ 𝐴 / 𝑥 ⦌ 𝑧 ) ) |
13 |
|
csbpredg |
⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ Pred ( 𝑅 , 𝐷 , 𝑦 ) = Pred ( ⦋ 𝐴 / 𝑥 ⦌ 𝑅 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 , ⦋ 𝐴 / 𝑥 ⦌ 𝑦 ) ) |
14 |
|
csbconstg |
⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ 𝑦 = 𝑦 ) |
15 |
|
predeq3 |
⊢ ( ⦋ 𝐴 / 𝑥 ⦌ 𝑦 = 𝑦 → Pred ( ⦋ 𝐴 / 𝑥 ⦌ 𝑅 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 , ⦋ 𝐴 / 𝑥 ⦌ 𝑦 ) = Pred ( ⦋ 𝐴 / 𝑥 ⦌ 𝑅 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 , 𝑦 ) ) |
16 |
14 15
|
syl |
⊢ ( 𝐴 ∈ 𝑉 → Pred ( ⦋ 𝐴 / 𝑥 ⦌ 𝑅 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 , ⦋ 𝐴 / 𝑥 ⦌ 𝑦 ) = Pred ( ⦋ 𝐴 / 𝑥 ⦌ 𝑅 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 , 𝑦 ) ) |
17 |
13 16
|
eqtrd |
⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ Pred ( 𝑅 , 𝐷 , 𝑦 ) = Pred ( ⦋ 𝐴 / 𝑥 ⦌ 𝑅 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 , 𝑦 ) ) |
18 |
17 8
|
sseq12d |
⊢ ( 𝐴 ∈ 𝑉 → ( ⦋ 𝐴 / 𝑥 ⦌ Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ ⦋ 𝐴 / 𝑥 ⦌ 𝑧 ↔ Pred ( ⦋ 𝐴 / 𝑥 ⦌ 𝑅 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 , 𝑦 ) ⊆ 𝑧 ) ) |
19 |
12 18
|
bitrd |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ↔ Pred ( ⦋ 𝐴 / 𝑥 ⦌ 𝑅 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 , 𝑦 ) ⊆ 𝑧 ) ) |
20 |
19
|
ralbidv |
⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑦 ∈ 𝑧 [ 𝐴 / 𝑥 ] Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ↔ ∀ 𝑦 ∈ 𝑧 Pred ( ⦋ 𝐴 / 𝑥 ⦌ 𝑅 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 , 𝑦 ) ⊆ 𝑧 ) ) |
21 |
11 20
|
bitrd |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] ∀ 𝑦 ∈ 𝑧 Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ↔ ∀ 𝑦 ∈ 𝑧 Pred ( ⦋ 𝐴 / 𝑥 ⦌ 𝑅 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 , 𝑦 ) ⊆ 𝑧 ) ) |
22 |
10 21
|
anbi12d |
⊢ ( 𝐴 ∈ 𝑉 → ( ( [ 𝐴 / 𝑥 ] 𝑧 ⊆ 𝐷 ∧ [ 𝐴 / 𝑥 ] ∀ 𝑦 ∈ 𝑧 Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ) ↔ ( 𝑧 ⊆ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ∧ ∀ 𝑦 ∈ 𝑧 Pred ( ⦋ 𝐴 / 𝑥 ⦌ 𝑅 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 , 𝑦 ) ⊆ 𝑧 ) ) ) |
23 |
6 22
|
bitrid |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] ( 𝑧 ⊆ 𝐷 ∧ ∀ 𝑦 ∈ 𝑧 Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ) ↔ ( 𝑧 ⊆ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ∧ ∀ 𝑦 ∈ 𝑧 Pred ( ⦋ 𝐴 / 𝑥 ⦌ 𝑅 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 , 𝑦 ) ⊆ 𝑧 ) ) ) |
24 |
|
sbcralg |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] ∀ 𝑦 ∈ 𝑧 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) ↔ ∀ 𝑦 ∈ 𝑧 [ 𝐴 / 𝑥 ] ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) ) ) |
25 |
|
sbceqg |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) ↔ ⦋ 𝐴 / 𝑥 ⦌ ( 𝑓 ‘ 𝑦 ) = ⦋ 𝐴 / 𝑥 ⦌ ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) ) ) |
26 |
|
csbconstg |
⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ ( 𝑓 ‘ 𝑦 ) = ( 𝑓 ‘ 𝑦 ) ) |
27 |
|
csbov123 |
⊢ ⦋ 𝐴 / 𝑥 ⦌ ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) = ( ⦋ 𝐴 / 𝑥 ⦌ 𝑦 ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ⦋ 𝐴 / 𝑥 ⦌ ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) |
28 |
|
csbres |
⊢ ⦋ 𝐴 / 𝑥 ⦌ ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) = ( ⦋ 𝐴 / 𝑥 ⦌ 𝑓 ↾ ⦋ 𝐴 / 𝑥 ⦌ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) |
29 |
|
csbconstg |
⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ 𝑓 = 𝑓 ) |
30 |
29 17
|
reseq12d |
⊢ ( 𝐴 ∈ 𝑉 → ( ⦋ 𝐴 / 𝑥 ⦌ 𝑓 ↾ ⦋ 𝐴 / 𝑥 ⦌ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) = ( 𝑓 ↾ Pred ( ⦋ 𝐴 / 𝑥 ⦌ 𝑅 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 , 𝑦 ) ) ) |
31 |
28 30
|
eqtrid |
⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) = ( 𝑓 ↾ Pred ( ⦋ 𝐴 / 𝑥 ⦌ 𝑅 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 , 𝑦 ) ) ) |
32 |
14 31
|
oveq12d |
⊢ ( 𝐴 ∈ 𝑉 → ( ⦋ 𝐴 / 𝑥 ⦌ 𝑦 ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ⦋ 𝐴 / 𝑥 ⦌ ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) = ( 𝑦 ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ( 𝑓 ↾ Pred ( ⦋ 𝐴 / 𝑥 ⦌ 𝑅 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 , 𝑦 ) ) ) ) |
33 |
27 32
|
eqtrid |
⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) = ( 𝑦 ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ( 𝑓 ↾ Pred ( ⦋ 𝐴 / 𝑥 ⦌ 𝑅 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 , 𝑦 ) ) ) ) |
34 |
26 33
|
eqeq12d |
⊢ ( 𝐴 ∈ 𝑉 → ( ⦋ 𝐴 / 𝑥 ⦌ ( 𝑓 ‘ 𝑦 ) = ⦋ 𝐴 / 𝑥 ⦌ ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) ↔ ( 𝑓 ‘ 𝑦 ) = ( 𝑦 ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ( 𝑓 ↾ Pred ( ⦋ 𝐴 / 𝑥 ⦌ 𝑅 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 , 𝑦 ) ) ) ) ) |
35 |
25 34
|
bitrd |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) ↔ ( 𝑓 ‘ 𝑦 ) = ( 𝑦 ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ( 𝑓 ↾ Pred ( ⦋ 𝐴 / 𝑥 ⦌ 𝑅 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 , 𝑦 ) ) ) ) ) |
36 |
35
|
ralbidv |
⊢ ( 𝐴 ∈ 𝑉 → ( ∀ 𝑦 ∈ 𝑧 [ 𝐴 / 𝑥 ] ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) ↔ ∀ 𝑦 ∈ 𝑧 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ( 𝑓 ↾ Pred ( ⦋ 𝐴 / 𝑥 ⦌ 𝑅 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 , 𝑦 ) ) ) ) ) |
37 |
24 36
|
bitrd |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] ∀ 𝑦 ∈ 𝑧 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) ↔ ∀ 𝑦 ∈ 𝑧 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ( 𝑓 ↾ Pred ( ⦋ 𝐴 / 𝑥 ⦌ 𝑅 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 , 𝑦 ) ) ) ) ) |
38 |
5 23 37
|
3anbi123d |
⊢ ( 𝐴 ∈ 𝑉 → ( ( [ 𝐴 / 𝑥 ] 𝑓 Fn 𝑧 ∧ [ 𝐴 / 𝑥 ] ( 𝑧 ⊆ 𝐷 ∧ ∀ 𝑦 ∈ 𝑧 Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ [ 𝐴 / 𝑥 ] ∀ 𝑦 ∈ 𝑧 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) ) ↔ ( 𝑓 Fn 𝑧 ∧ ( 𝑧 ⊆ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ∧ ∀ 𝑦 ∈ 𝑧 Pred ( ⦋ 𝐴 / 𝑥 ⦌ 𝑅 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ ∀ 𝑦 ∈ 𝑧 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ( 𝑓 ↾ Pred ( ⦋ 𝐴 / 𝑥 ⦌ 𝑅 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 , 𝑦 ) ) ) ) ) ) |
39 |
4 38
|
bitrid |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] ( 𝑓 Fn 𝑧 ∧ ( 𝑧 ⊆ 𝐷 ∧ ∀ 𝑦 ∈ 𝑧 Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ ∀ 𝑦 ∈ 𝑧 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) ) ↔ ( 𝑓 Fn 𝑧 ∧ ( 𝑧 ⊆ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ∧ ∀ 𝑦 ∈ 𝑧 Pred ( ⦋ 𝐴 / 𝑥 ⦌ 𝑅 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ ∀ 𝑦 ∈ 𝑧 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ( 𝑓 ↾ Pred ( ⦋ 𝐴 / 𝑥 ⦌ 𝑅 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 , 𝑦 ) ) ) ) ) ) |
40 |
39
|
exbidv |
⊢ ( 𝐴 ∈ 𝑉 → ( ∃ 𝑧 [ 𝐴 / 𝑥 ] ( 𝑓 Fn 𝑧 ∧ ( 𝑧 ⊆ 𝐷 ∧ ∀ 𝑦 ∈ 𝑧 Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ ∀ 𝑦 ∈ 𝑧 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) ) ↔ ∃ 𝑧 ( 𝑓 Fn 𝑧 ∧ ( 𝑧 ⊆ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ∧ ∀ 𝑦 ∈ 𝑧 Pred ( ⦋ 𝐴 / 𝑥 ⦌ 𝑅 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ ∀ 𝑦 ∈ 𝑧 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ( 𝑓 ↾ Pred ( ⦋ 𝐴 / 𝑥 ⦌ 𝑅 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 , 𝑦 ) ) ) ) ) ) |
41 |
3 40
|
bitrid |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] ∃ 𝑧 ( 𝑓 Fn 𝑧 ∧ ( 𝑧 ⊆ 𝐷 ∧ ∀ 𝑦 ∈ 𝑧 Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ ∀ 𝑦 ∈ 𝑧 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) ) ↔ ∃ 𝑧 ( 𝑓 Fn 𝑧 ∧ ( 𝑧 ⊆ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ∧ ∀ 𝑦 ∈ 𝑧 Pred ( ⦋ 𝐴 / 𝑥 ⦌ 𝑅 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ ∀ 𝑦 ∈ 𝑧 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ( 𝑓 ↾ Pred ( ⦋ 𝐴 / 𝑥 ⦌ 𝑅 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 , 𝑦 ) ) ) ) ) ) |
42 |
41
|
abbidv |
⊢ ( 𝐴 ∈ 𝑉 → { 𝑓 ∣ [ 𝐴 / 𝑥 ] ∃ 𝑧 ( 𝑓 Fn 𝑧 ∧ ( 𝑧 ⊆ 𝐷 ∧ ∀ 𝑦 ∈ 𝑧 Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ ∀ 𝑦 ∈ 𝑧 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) ) } = { 𝑓 ∣ ∃ 𝑧 ( 𝑓 Fn 𝑧 ∧ ( 𝑧 ⊆ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ∧ ∀ 𝑦 ∈ 𝑧 Pred ( ⦋ 𝐴 / 𝑥 ⦌ 𝑅 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ ∀ 𝑦 ∈ 𝑧 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ( 𝑓 ↾ Pred ( ⦋ 𝐴 / 𝑥 ⦌ 𝑅 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 , 𝑦 ) ) ) ) } ) |
43 |
2 42
|
eqtrid |
⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ { 𝑓 ∣ ∃ 𝑧 ( 𝑓 Fn 𝑧 ∧ ( 𝑧 ⊆ 𝐷 ∧ ∀ 𝑦 ∈ 𝑧 Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ ∀ 𝑦 ∈ 𝑧 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) ) } = { 𝑓 ∣ ∃ 𝑧 ( 𝑓 Fn 𝑧 ∧ ( 𝑧 ⊆ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ∧ ∀ 𝑦 ∈ 𝑧 Pred ( ⦋ 𝐴 / 𝑥 ⦌ 𝑅 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ ∀ 𝑦 ∈ 𝑧 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ( 𝑓 ↾ Pred ( ⦋ 𝐴 / 𝑥 ⦌ 𝑅 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 , 𝑦 ) ) ) ) } ) |
44 |
43
|
unieqd |
⊢ ( 𝐴 ∈ 𝑉 → ∪ ⦋ 𝐴 / 𝑥 ⦌ { 𝑓 ∣ ∃ 𝑧 ( 𝑓 Fn 𝑧 ∧ ( 𝑧 ⊆ 𝐷 ∧ ∀ 𝑦 ∈ 𝑧 Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ ∀ 𝑦 ∈ 𝑧 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) ) } = ∪ { 𝑓 ∣ ∃ 𝑧 ( 𝑓 Fn 𝑧 ∧ ( 𝑧 ⊆ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ∧ ∀ 𝑦 ∈ 𝑧 Pred ( ⦋ 𝐴 / 𝑥 ⦌ 𝑅 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ ∀ 𝑦 ∈ 𝑧 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ( 𝑓 ↾ Pred ( ⦋ 𝐴 / 𝑥 ⦌ 𝑅 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 , 𝑦 ) ) ) ) } ) |
45 |
1 44
|
eqtrid |
⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ ∪ { 𝑓 ∣ ∃ 𝑧 ( 𝑓 Fn 𝑧 ∧ ( 𝑧 ⊆ 𝐷 ∧ ∀ 𝑦 ∈ 𝑧 Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ ∀ 𝑦 ∈ 𝑧 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) ) } = ∪ { 𝑓 ∣ ∃ 𝑧 ( 𝑓 Fn 𝑧 ∧ ( 𝑧 ⊆ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ∧ ∀ 𝑦 ∈ 𝑧 Pred ( ⦋ 𝐴 / 𝑥 ⦌ 𝑅 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ ∀ 𝑦 ∈ 𝑧 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ( 𝑓 ↾ Pred ( ⦋ 𝐴 / 𝑥 ⦌ 𝑅 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 , 𝑦 ) ) ) ) } ) |
46 |
|
df-frecs |
⊢ frecs ( 𝑅 , 𝐷 , 𝐹 ) = ∪ { 𝑓 ∣ ∃ 𝑧 ( 𝑓 Fn 𝑧 ∧ ( 𝑧 ⊆ 𝐷 ∧ ∀ 𝑦 ∈ 𝑧 Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ ∀ 𝑦 ∈ 𝑧 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) ) } |
47 |
46
|
csbeq2i |
⊢ ⦋ 𝐴 / 𝑥 ⦌ frecs ( 𝑅 , 𝐷 , 𝐹 ) = ⦋ 𝐴 / 𝑥 ⦌ ∪ { 𝑓 ∣ ∃ 𝑧 ( 𝑓 Fn 𝑧 ∧ ( 𝑧 ⊆ 𝐷 ∧ ∀ 𝑦 ∈ 𝑧 Pred ( 𝑅 , 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ ∀ 𝑦 ∈ 𝑧 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 𝐹 ( 𝑓 ↾ Pred ( 𝑅 , 𝐷 , 𝑦 ) ) ) ) } |
48 |
|
df-frecs |
⊢ frecs ( ⦋ 𝐴 / 𝑥 ⦌ 𝑅 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 , ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ) = ∪ { 𝑓 ∣ ∃ 𝑧 ( 𝑓 Fn 𝑧 ∧ ( 𝑧 ⊆ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ∧ ∀ 𝑦 ∈ 𝑧 Pred ( ⦋ 𝐴 / 𝑥 ⦌ 𝑅 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 , 𝑦 ) ⊆ 𝑧 ) ∧ ∀ 𝑦 ∈ 𝑧 ( 𝑓 ‘ 𝑦 ) = ( 𝑦 ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ( 𝑓 ↾ Pred ( ⦋ 𝐴 / 𝑥 ⦌ 𝑅 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 , 𝑦 ) ) ) ) } |
49 |
45 47 48
|
3eqtr4g |
⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ frecs ( 𝑅 , 𝐷 , 𝐹 ) = frecs ( ⦋ 𝐴 / 𝑥 ⦌ 𝑅 , ⦋ 𝐴 / 𝑥 ⦌ 𝐷 , ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ) ) |