Metamath Proof Explorer


Theorem csbfv

Description: Substitution for a function value. (Contributed by NM, 1-Jan-2006) (Revised by NM, 20-Aug-2018)

Ref Expression
Assertion csbfv 𝐴 / 𝑥 ( 𝐹𝑥 ) = ( 𝐹𝐴 )

Proof

Step Hyp Ref Expression
1 csbfv2g ( 𝐴 ∈ V → 𝐴 / 𝑥 ( 𝐹𝑥 ) = ( 𝐹 𝐴 / 𝑥 𝑥 ) )
2 csbvarg ( 𝐴 ∈ V → 𝐴 / 𝑥 𝑥 = 𝐴 )
3 2 fveq2d ( 𝐴 ∈ V → ( 𝐹 𝐴 / 𝑥 𝑥 ) = ( 𝐹𝐴 ) )
4 1 3 eqtrd ( 𝐴 ∈ V → 𝐴 / 𝑥 ( 𝐹𝑥 ) = ( 𝐹𝐴 ) )
5 csbprc ( ¬ 𝐴 ∈ V → 𝐴 / 𝑥 ( 𝐹𝑥 ) = ∅ )
6 fvprc ( ¬ 𝐴 ∈ V → ( 𝐹𝐴 ) = ∅ )
7 5 6 eqtr4d ( ¬ 𝐴 ∈ V → 𝐴 / 𝑥 ( 𝐹𝑥 ) = ( 𝐹𝐴 ) )
8 4 7 pm2.61i 𝐴 / 𝑥 ( 𝐹𝑥 ) = ( 𝐹𝐴 )