Metamath Proof Explorer


Theorem csbgfi

Description: Substitution for a variable not free in a class does not affect it, in inference form. (Contributed by Giovanni Mascellani, 4-Jun-2019)

Ref Expression
Hypotheses csbgfi.1 𝐴 ∈ V
csbgfi.2 𝑥 𝐵
Assertion csbgfi 𝐴 / 𝑥 𝐵 = 𝐵

Proof

Step Hyp Ref Expression
1 csbgfi.1 𝐴 ∈ V
2 csbgfi.2 𝑥 𝐵
3 df-csb 𝐴 / 𝑥 𝐵 = { 𝑦[ 𝐴 / 𝑥 ] 𝑦𝐵 }
4 3 abeq2i ( 𝑦 𝐴 / 𝑥 𝐵[ 𝐴 / 𝑥 ] 𝑦𝐵 )
5 2 nfcri 𝑥 𝑦𝐵
6 1 5 sbcgfi ( [ 𝐴 / 𝑥 ] 𝑦𝐵𝑦𝐵 )
7 4 6 bitri ( 𝑦 𝐴 / 𝑥 𝐵𝑦𝐵 )
8 7 eqriv 𝐴 / 𝑥 𝐵 = 𝐵