Description: Introduce an explicit substitution into an implicit substitution hypothesis. See sbhypf for class substitution version. (Contributed by NM, 19-Dec-2008)
Ref | Expression | ||
---|---|---|---|
Hypotheses | csbhypf.1 | ⊢ Ⅎ 𝑥 𝐴 | |
csbhypf.2 | ⊢ Ⅎ 𝑥 𝐶 | ||
csbhypf.3 | ⊢ ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) | ||
Assertion | csbhypf | ⊢ ( 𝑦 = 𝐴 → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 = 𝐶 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbhypf.1 | ⊢ Ⅎ 𝑥 𝐴 | |
2 | csbhypf.2 | ⊢ Ⅎ 𝑥 𝐶 | |
3 | csbhypf.3 | ⊢ ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) | |
4 | 1 | nfeq2 | ⊢ Ⅎ 𝑥 𝑦 = 𝐴 |
5 | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 | |
6 | 5 2 | nfeq | ⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 = 𝐶 |
7 | 4 6 | nfim | ⊢ Ⅎ 𝑥 ( 𝑦 = 𝐴 → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 = 𝐶 ) |
8 | eqeq1 | ⊢ ( 𝑥 = 𝑦 → ( 𝑥 = 𝐴 ↔ 𝑦 = 𝐴 ) ) | |
9 | csbeq1a | ⊢ ( 𝑥 = 𝑦 → 𝐵 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) | |
10 | 9 | eqeq1d | ⊢ ( 𝑥 = 𝑦 → ( 𝐵 = 𝐶 ↔ ⦋ 𝑦 / 𝑥 ⦌ 𝐵 = 𝐶 ) ) |
11 | 8 10 | imbi12d | ⊢ ( 𝑥 = 𝑦 → ( ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) ↔ ( 𝑦 = 𝐴 → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 = 𝐶 ) ) ) |
12 | 7 11 3 | chvarfv | ⊢ ( 𝑦 = 𝐴 → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 = 𝐶 ) |