Description: Analogue of sbid for proper substitution into a class. (Contributed by NM, 10-Nov-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | csbid | ⊢ ⦋ 𝑥 / 𝑥 ⦌ 𝐴 = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-csb | ⊢ ⦋ 𝑥 / 𝑥 ⦌ 𝐴 = { 𝑦 ∣ [ 𝑥 / 𝑥 ] 𝑦 ∈ 𝐴 } | |
2 | sbcid | ⊢ ( [ 𝑥 / 𝑥 ] 𝑦 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴 ) | |
3 | 2 | abbii | ⊢ { 𝑦 ∣ [ 𝑥 / 𝑥 ] 𝑦 ∈ 𝐴 } = { 𝑦 ∣ 𝑦 ∈ 𝐴 } |
4 | abid2 | ⊢ { 𝑦 ∣ 𝑦 ∈ 𝐴 } = 𝐴 | |
5 | 1 3 4 | 3eqtri | ⊢ ⦋ 𝑥 / 𝑥 ⦌ 𝐴 = 𝐴 |