Metamath Proof Explorer


Theorem csbid

Description: Analogue of sbid for proper substitution into a class. (Contributed by NM, 10-Nov-2005)

Ref Expression
Assertion csbid 𝑥 / 𝑥 𝐴 = 𝐴

Proof

Step Hyp Ref Expression
1 df-csb 𝑥 / 𝑥 𝐴 = { 𝑦[ 𝑥 / 𝑥 ] 𝑦𝐴 }
2 sbcid ( [ 𝑥 / 𝑥 ] 𝑦𝐴𝑦𝐴 )
3 2 abbii { 𝑦[ 𝑥 / 𝑥 ] 𝑦𝐴 } = { 𝑦𝑦𝐴 }
4 abid2 { 𝑦𝑦𝐴 } = 𝐴
5 1 3 4 3eqtri 𝑥 / 𝑥 𝐴 = 𝐴