Metamath Proof Explorer


Theorem csbidm

Description: Idempotent law for class substitutions. (Contributed by NM, 1-Mar-2008) (Revised by NM, 18-Aug-2018)

Ref Expression
Assertion csbidm 𝐴 / 𝑥 𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥 𝐵

Proof

Step Hyp Ref Expression
1 csbnest1g ( 𝐴 ∈ V → 𝐴 / 𝑥 𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥 𝐴 / 𝑥 𝐵 )
2 csbconstg ( 𝐴 ∈ V → 𝐴 / 𝑥 𝐴 = 𝐴 )
3 2 csbeq1d ( 𝐴 ∈ V → 𝐴 / 𝑥 𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥 𝐵 )
4 1 3 eqtrd ( 𝐴 ∈ V → 𝐴 / 𝑥 𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥 𝐵 )
5 csbprc ( ¬ 𝐴 ∈ V → 𝐴 / 𝑥 𝐴 / 𝑥 𝐵 = ∅ )
6 csbprc ( ¬ 𝐴 ∈ V → 𝐴 / 𝑥 𝐵 = ∅ )
7 5 6 eqtr4d ( ¬ 𝐴 ∈ V → 𝐴 / 𝑥 𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥 𝐵 )
8 4 7 pm2.61i 𝐴 / 𝑥 𝐴 / 𝑥 𝐵 = 𝐴 / 𝑥 𝐵