Description: Idempotent law for class substitutions. (Contributed by NM, 1-Mar-2008) (Revised by NM, 18-Aug-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | csbidm | ⊢ ⦋ 𝐴 / 𝑥 ⦌ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = ⦋ 𝐴 / 𝑥 ⦌ 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbnest1g | ⊢ ( 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = ⦋ ⦋ 𝐴 / 𝑥 ⦌ 𝐴 / 𝑥 ⦌ 𝐵 ) | |
2 | csbconstg | ⊢ ( 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ 𝐴 = 𝐴 ) | |
3 | 2 | csbeq1d | ⊢ ( 𝐴 ∈ V → ⦋ ⦋ 𝐴 / 𝑥 ⦌ 𝐴 / 𝑥 ⦌ 𝐵 = ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) |
4 | 1 3 | eqtrd | ⊢ ( 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) |
5 | csbprc | ⊢ ( ¬ 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = ∅ ) | |
6 | csbprc | ⊢ ( ¬ 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = ∅ ) | |
7 | 5 6 | eqtr4d | ⊢ ( ¬ 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) |
8 | 4 7 | pm2.61i | ⊢ ⦋ 𝐴 / 𝑥 ⦌ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = ⦋ 𝐴 / 𝑥 ⦌ 𝐵 |