Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - start with the Axiom of Extensionality
Proper substitution of classes for sets into classes
csbie
Metamath Proof Explorer
Description: Conversion of implicit substitution to explicit substitution into a
class. (Contributed by AV , 2-Dec-2019) Reduce axiom usage. (Revised by Gino Giotto , 15-Oct-2024)
Ref
Expression
Hypotheses
csbie.1
⊢ 𝐴 ∈ V
csbie.2
⊢ ( 𝑥 = 𝐴 → 𝐵 = 𝐶 )
Assertion
csbie
⊢ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = 𝐶
Proof
Step
Hyp
Ref
Expression
1
csbie.1
⊢ 𝐴 ∈ V
2
csbie.2
⊢ ( 𝑥 = 𝐴 → 𝐵 = 𝐶 )
3
df-csb
⊢ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 }
4
2
eleq2d
⊢ ( 𝑥 = 𝐴 → ( 𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐶 ) )
5
1 4
sbcie
⊢ ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 ↔ 𝑦 ∈ 𝐶 )
6
5
abbii
⊢ { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 } = { 𝑦 ∣ 𝑦 ∈ 𝐶 }
7
abid2
⊢ { 𝑦 ∣ 𝑦 ∈ 𝐶 } = 𝐶
8
3 6 7
3eqtri
⊢ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = 𝐶