Metamath Proof Explorer


Theorem csbie

Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by AV, 2-Dec-2019) Reduce axiom usage. (Revised by Gino Giotto, 15-Oct-2024)

Ref Expression
Hypotheses csbie.1 𝐴 ∈ V
csbie.2 ( 𝑥 = 𝐴𝐵 = 𝐶 )
Assertion csbie 𝐴 / 𝑥 𝐵 = 𝐶

Proof

Step Hyp Ref Expression
1 csbie.1 𝐴 ∈ V
2 csbie.2 ( 𝑥 = 𝐴𝐵 = 𝐶 )
3 df-csb 𝐴 / 𝑥 𝐵 = { 𝑦[ 𝐴 / 𝑥 ] 𝑦𝐵 }
4 2 eleq2d ( 𝑥 = 𝐴 → ( 𝑦𝐵𝑦𝐶 ) )
5 1 4 sbcie ( [ 𝐴 / 𝑥 ] 𝑦𝐵𝑦𝐶 )
6 5 abbii { 𝑦[ 𝐴 / 𝑥 ] 𝑦𝐵 } = { 𝑦𝑦𝐶 }
7 abid2 { 𝑦𝑦𝐶 } = 𝐶
8 3 6 7 3eqtri 𝐴 / 𝑥 𝐵 = 𝐶