Database  
				ZF (ZERMELO-FRAENKEL) SET THEORY  
				ZF Set Theory - start with the Axiom of Extensionality  
				Proper substitution of classes for sets into classes  
				csbie  
			 
				
		 
		 Metamath Proof Explorer 
		
			
		 
		 
		
		Description:   Conversion of implicit substitution to explicit substitution into a
       class.  (Contributed by AV , 2-Dec-2019)   Reduce axiom usage.  (Revised by GG , 15-Oct-2024) 
		
			
				
					 
					 
					Ref 
					Expression 
				 
					
						 
						Hypotheses 
						csbie.1  
						⊢  𝐴   ∈  V  
					 
					
						 
						 
						csbie.2  
						⊢  ( 𝑥   =  𝐴   →  𝐵   =  𝐶  )  
					 
				
					 
					Assertion 
					csbie  
					⊢   ⦋  𝐴   /  𝑥  ⦌  𝐵   =  𝐶   
				 
			
		 
		 
			
				Proof 
				
					
						Step 
						Hyp 
						Ref 
						Expression 
					 
						
							1  
							
								
							 
							csbie.1  
							⊢  𝐴   ∈  V  
						 
						
							2  
							
								
							 
							csbie.2  
							⊢  ( 𝑥   =  𝐴   →  𝐵   =  𝐶  )  
						 
						
							3  
							
								
							 
							df-csb  
							⊢  ⦋  𝐴   /  𝑥  ⦌  𝐵   =  { 𝑦   ∣  [  𝐴   /  𝑥  ]  𝑦   ∈  𝐵  }  
						 
						
							4  
							
								2 
							 
							eleq2d  
							⊢  ( 𝑥   =  𝐴   →  ( 𝑦   ∈  𝐵   ↔  𝑦   ∈  𝐶  ) )  
						 
						
							5  
							
								1  4 
							 
							sbcie  
							⊢  ( [  𝐴   /  𝑥  ]  𝑦   ∈  𝐵   ↔  𝑦   ∈  𝐶  )  
						 
						
							6  
							
								5 
							 
							abbii  
							⊢  { 𝑦   ∣  [  𝐴   /  𝑥  ]  𝑦   ∈  𝐵  }  =  { 𝑦   ∣  𝑦   ∈  𝐶  }  
						 
						
							7  
							
								
							 
							abid2  
							⊢  { 𝑦   ∣  𝑦   ∈  𝐶  }  =  𝐶   
						 
						
							8  
							
								3  6  7 
							 
							3eqtri  
							⊢  ⦋  𝐴   /  𝑥  ⦌  𝐵   =  𝐶