Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 27-Aug-2007)
Ref | Expression | ||
---|---|---|---|
Hypotheses | csbie2t.1 | ⊢ 𝐴 ∈ V | |
csbie2t.2 | ⊢ 𝐵 ∈ V | ||
csbie2.3 | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → 𝐶 = 𝐷 ) | ||
Assertion | csbie2 | ⊢ ⦋ 𝐴 / 𝑥 ⦌ ⦋ 𝐵 / 𝑦 ⦌ 𝐶 = 𝐷 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbie2t.1 | ⊢ 𝐴 ∈ V | |
2 | csbie2t.2 | ⊢ 𝐵 ∈ V | |
3 | csbie2.3 | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → 𝐶 = 𝐷 ) | |
4 | 3 | gen2 | ⊢ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → 𝐶 = 𝐷 ) |
5 | 1 2 | csbie2t | ⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → 𝐶 = 𝐷 ) → ⦋ 𝐴 / 𝑥 ⦌ ⦋ 𝐵 / 𝑦 ⦌ 𝐶 = 𝐷 ) |
6 | 4 5 | ax-mp | ⊢ ⦋ 𝐴 / 𝑥 ⦌ ⦋ 𝐵 / 𝑦 ⦌ 𝐶 = 𝐷 |