Step |
Hyp |
Ref |
Expression |
1 |
|
csbie2df.p |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
csbie2df.c |
⊢ ( 𝜑 → Ⅎ 𝑥 𝐶 ) |
3 |
|
csbie2df.d |
⊢ ( 𝜑 → Ⅎ 𝑥 𝐷 ) |
4 |
|
csbie2df.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
5 |
|
csbie2df.1 |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → 𝐵 = 𝐶 ) |
6 |
|
csbie2df.2 |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝐴 ) → 𝐶 = 𝐷 ) |
7 |
|
eqidd |
⊢ ( 𝜑 → 𝐷 = 𝐷 ) |
8 |
|
dfsbcq |
⊢ ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] 𝐵 = 𝐷 ↔ [ 𝐴 / 𝑥 ] 𝐵 = 𝐷 ) ) |
9 |
|
sbceqg |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] 𝐵 = 𝐷 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) ) |
10 |
9
|
adantr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝜑 ) → ( [ 𝐴 / 𝑥 ] 𝐵 = 𝐷 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) ) |
11 |
|
csbtt |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ Ⅎ 𝑥 𝐷 ) → ⦋ 𝐴 / 𝑥 ⦌ 𝐷 = 𝐷 ) |
12 |
3 11
|
sylan2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝜑 ) → ⦋ 𝐴 / 𝑥 ⦌ 𝐷 = 𝐷 ) |
13 |
12
|
eqeq2d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝜑 ) → ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = 𝐷 ) ) |
14 |
10 13
|
bitrd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝜑 ) → ( [ 𝐴 / 𝑥 ] 𝐵 = 𝐷 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = 𝐷 ) ) |
15 |
4 14
|
mpancom |
⊢ ( 𝜑 → ( [ 𝐴 / 𝑥 ] 𝐵 = 𝐷 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = 𝐷 ) ) |
16 |
8 15
|
sylan9bb |
⊢ ( ( 𝑦 = 𝐴 ∧ 𝜑 ) → ( [ 𝑦 / 𝑥 ] 𝐵 = 𝐷 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = 𝐷 ) ) |
17 |
16
|
pm5.74da |
⊢ ( 𝑦 = 𝐴 → ( ( 𝜑 → [ 𝑦 / 𝑥 ] 𝐵 = 𝐷 ) ↔ ( 𝜑 → ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = 𝐷 ) ) ) |
18 |
6
|
eqeq1d |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝐴 ) → ( 𝐶 = 𝐷 ↔ 𝐷 = 𝐷 ) ) |
19 |
18
|
expcom |
⊢ ( 𝑦 = 𝐴 → ( 𝜑 → ( 𝐶 = 𝐷 ↔ 𝐷 = 𝐷 ) ) ) |
20 |
19
|
pm5.74d |
⊢ ( 𝑦 = 𝐴 → ( ( 𝜑 → 𝐶 = 𝐷 ) ↔ ( 𝜑 → 𝐷 = 𝐷 ) ) ) |
21 |
|
sbsbc |
⊢ ( [ 𝑦 / 𝑥 ] 𝐵 = 𝐷 ↔ [ 𝑦 / 𝑥 ] 𝐵 = 𝐷 ) |
22 |
2 3
|
nfeqd |
⊢ ( 𝜑 → Ⅎ 𝑥 𝐶 = 𝐷 ) |
23 |
5
|
eqeq1d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → ( 𝐵 = 𝐷 ↔ 𝐶 = 𝐷 ) ) |
24 |
23
|
ex |
⊢ ( 𝜑 → ( 𝑥 = 𝑦 → ( 𝐵 = 𝐷 ↔ 𝐶 = 𝐷 ) ) ) |
25 |
1 22 24
|
sbiedw |
⊢ ( 𝜑 → ( [ 𝑦 / 𝑥 ] 𝐵 = 𝐷 ↔ 𝐶 = 𝐷 ) ) |
26 |
21 25
|
bitr3id |
⊢ ( 𝜑 → ( [ 𝑦 / 𝑥 ] 𝐵 = 𝐷 ↔ 𝐶 = 𝐷 ) ) |
27 |
26
|
pm5.74i |
⊢ ( ( 𝜑 → [ 𝑦 / 𝑥 ] 𝐵 = 𝐷 ) ↔ ( 𝜑 → 𝐶 = 𝐷 ) ) |
28 |
17 20 27
|
vtoclbg |
⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝜑 → ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = 𝐷 ) ↔ ( 𝜑 → 𝐷 = 𝐷 ) ) ) |
29 |
7 28
|
mpbiri |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝜑 → ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = 𝐷 ) ) |
30 |
4 29
|
mpcom |
⊢ ( 𝜑 → ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = 𝐷 ) |