| Step |
Hyp |
Ref |
Expression |
| 1 |
|
csbie2df.p |
⊢ Ⅎ 𝑥 𝜑 |
| 2 |
|
csbie2df.c |
⊢ ( 𝜑 → Ⅎ 𝑥 𝐶 ) |
| 3 |
|
csbie2df.d |
⊢ ( 𝜑 → Ⅎ 𝑥 𝐷 ) |
| 4 |
|
csbie2df.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 5 |
|
csbie2df.1 |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → 𝐵 = 𝐶 ) |
| 6 |
|
csbie2df.2 |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝐴 ) → 𝐶 = 𝐷 ) |
| 7 |
|
eqidd |
⊢ ( 𝜑 → 𝐷 = 𝐷 ) |
| 8 |
|
dfsbcq |
⊢ ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] 𝐵 = 𝐷 ↔ [ 𝐴 / 𝑥 ] 𝐵 = 𝐷 ) ) |
| 9 |
|
sbceqg |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] 𝐵 = 𝐷 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) ) |
| 10 |
9
|
adantr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝜑 ) → ( [ 𝐴 / 𝑥 ] 𝐵 = 𝐷 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) ) |
| 11 |
|
csbtt |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ Ⅎ 𝑥 𝐷 ) → ⦋ 𝐴 / 𝑥 ⦌ 𝐷 = 𝐷 ) |
| 12 |
3 11
|
sylan2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝜑 ) → ⦋ 𝐴 / 𝑥 ⦌ 𝐷 = 𝐷 ) |
| 13 |
12
|
eqeq2d |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝜑 ) → ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = 𝐷 ) ) |
| 14 |
10 13
|
bitrd |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝜑 ) → ( [ 𝐴 / 𝑥 ] 𝐵 = 𝐷 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = 𝐷 ) ) |
| 15 |
4 14
|
mpancom |
⊢ ( 𝜑 → ( [ 𝐴 / 𝑥 ] 𝐵 = 𝐷 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = 𝐷 ) ) |
| 16 |
8 15
|
sylan9bb |
⊢ ( ( 𝑦 = 𝐴 ∧ 𝜑 ) → ( [ 𝑦 / 𝑥 ] 𝐵 = 𝐷 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = 𝐷 ) ) |
| 17 |
16
|
pm5.74da |
⊢ ( 𝑦 = 𝐴 → ( ( 𝜑 → [ 𝑦 / 𝑥 ] 𝐵 = 𝐷 ) ↔ ( 𝜑 → ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = 𝐷 ) ) ) |
| 18 |
6
|
eqeq1d |
⊢ ( ( 𝜑 ∧ 𝑦 = 𝐴 ) → ( 𝐶 = 𝐷 ↔ 𝐷 = 𝐷 ) ) |
| 19 |
18
|
expcom |
⊢ ( 𝑦 = 𝐴 → ( 𝜑 → ( 𝐶 = 𝐷 ↔ 𝐷 = 𝐷 ) ) ) |
| 20 |
19
|
pm5.74d |
⊢ ( 𝑦 = 𝐴 → ( ( 𝜑 → 𝐶 = 𝐷 ) ↔ ( 𝜑 → 𝐷 = 𝐷 ) ) ) |
| 21 |
|
sbsbc |
⊢ ( [ 𝑦 / 𝑥 ] 𝐵 = 𝐷 ↔ [ 𝑦 / 𝑥 ] 𝐵 = 𝐷 ) |
| 22 |
2 3
|
nfeqd |
⊢ ( 𝜑 → Ⅎ 𝑥 𝐶 = 𝐷 ) |
| 23 |
5
|
eqeq1d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝑦 ) → ( 𝐵 = 𝐷 ↔ 𝐶 = 𝐷 ) ) |
| 24 |
23
|
ex |
⊢ ( 𝜑 → ( 𝑥 = 𝑦 → ( 𝐵 = 𝐷 ↔ 𝐶 = 𝐷 ) ) ) |
| 25 |
1 22 24
|
sbiedw |
⊢ ( 𝜑 → ( [ 𝑦 / 𝑥 ] 𝐵 = 𝐷 ↔ 𝐶 = 𝐷 ) ) |
| 26 |
21 25
|
bitr3id |
⊢ ( 𝜑 → ( [ 𝑦 / 𝑥 ] 𝐵 = 𝐷 ↔ 𝐶 = 𝐷 ) ) |
| 27 |
26
|
pm5.74i |
⊢ ( ( 𝜑 → [ 𝑦 / 𝑥 ] 𝐵 = 𝐷 ) ↔ ( 𝜑 → 𝐶 = 𝐷 ) ) |
| 28 |
17 20 27
|
vtoclbg |
⊢ ( 𝐴 ∈ 𝑉 → ( ( 𝜑 → ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = 𝐷 ) ↔ ( 𝜑 → 𝐷 = 𝐷 ) ) ) |
| 29 |
7 28
|
mpbiri |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝜑 → ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = 𝐷 ) ) |
| 30 |
4 29
|
mpcom |
⊢ ( 𝜑 → ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = 𝐷 ) |