Step |
Hyp |
Ref |
Expression |
1 |
|
csbie2t.1 |
⊢ 𝐴 ∈ V |
2 |
|
csbie2t.2 |
⊢ 𝐵 ∈ V |
3 |
|
nfa1 |
⊢ Ⅎ 𝑥 ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → 𝐶 = 𝐷 ) |
4 |
|
nfcvd |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → 𝐶 = 𝐷 ) → Ⅎ 𝑥 𝐷 ) |
5 |
1
|
a1i |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → 𝐶 = 𝐷 ) → 𝐴 ∈ V ) |
6 |
|
nfa2 |
⊢ Ⅎ 𝑦 ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → 𝐶 = 𝐷 ) |
7 |
|
nfv |
⊢ Ⅎ 𝑦 𝑥 = 𝐴 |
8 |
6 7
|
nfan |
⊢ Ⅎ 𝑦 ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → 𝐶 = 𝐷 ) ∧ 𝑥 = 𝐴 ) |
9 |
|
nfcvd |
⊢ ( ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → 𝐶 = 𝐷 ) ∧ 𝑥 = 𝐴 ) → Ⅎ 𝑦 𝐷 ) |
10 |
2
|
a1i |
⊢ ( ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → 𝐶 = 𝐷 ) ∧ 𝑥 = 𝐴 ) → 𝐵 ∈ V ) |
11 |
|
2sp |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → 𝐶 = 𝐷 ) → ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → 𝐶 = 𝐷 ) ) |
12 |
11
|
impl |
⊢ ( ( ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → 𝐶 = 𝐷 ) ∧ 𝑥 = 𝐴 ) ∧ 𝑦 = 𝐵 ) → 𝐶 = 𝐷 ) |
13 |
8 9 10 12
|
csbiedf |
⊢ ( ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → 𝐶 = 𝐷 ) ∧ 𝑥 = 𝐴 ) → ⦋ 𝐵 / 𝑦 ⦌ 𝐶 = 𝐷 ) |
14 |
3 4 5 13
|
csbiedf |
⊢ ( ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → 𝐶 = 𝐷 ) → ⦋ 𝐴 / 𝑥 ⦌ ⦋ 𝐵 / 𝑦 ⦌ 𝐶 = 𝐷 ) |