Metamath Proof Explorer


Theorem csbiebt

Description: Conversion of implicit substitution to explicit substitution into a class. (Closed theorem version of csbiegf .) (Contributed by NM, 11-Nov-2005)

Ref Expression
Assertion csbiebt ( ( 𝐴𝑉 𝑥 𝐶 ) → ( ∀ 𝑥 ( 𝑥 = 𝐴𝐵 = 𝐶 ) ↔ 𝐴 / 𝑥 𝐵 = 𝐶 ) )

Proof

Step Hyp Ref Expression
1 elex ( 𝐴𝑉𝐴 ∈ V )
2 spsbc ( 𝐴 ∈ V → ( ∀ 𝑥 ( 𝑥 = 𝐴𝐵 = 𝐶 ) → [ 𝐴 / 𝑥 ] ( 𝑥 = 𝐴𝐵 = 𝐶 ) ) )
3 2 adantr ( ( 𝐴 ∈ V ∧ 𝑥 𝐶 ) → ( ∀ 𝑥 ( 𝑥 = 𝐴𝐵 = 𝐶 ) → [ 𝐴 / 𝑥 ] ( 𝑥 = 𝐴𝐵 = 𝐶 ) ) )
4 simpl ( ( 𝐴 ∈ V ∧ 𝑥 𝐶 ) → 𝐴 ∈ V )
5 biimt ( 𝑥 = 𝐴 → ( 𝐵 = 𝐶 ↔ ( 𝑥 = 𝐴𝐵 = 𝐶 ) ) )
6 csbeq1a ( 𝑥 = 𝐴𝐵 = 𝐴 / 𝑥 𝐵 )
7 6 eqeq1d ( 𝑥 = 𝐴 → ( 𝐵 = 𝐶 𝐴 / 𝑥 𝐵 = 𝐶 ) )
8 5 7 bitr3d ( 𝑥 = 𝐴 → ( ( 𝑥 = 𝐴𝐵 = 𝐶 ) ↔ 𝐴 / 𝑥 𝐵 = 𝐶 ) )
9 8 adantl ( ( ( 𝐴 ∈ V ∧ 𝑥 𝐶 ) ∧ 𝑥 = 𝐴 ) → ( ( 𝑥 = 𝐴𝐵 = 𝐶 ) ↔ 𝐴 / 𝑥 𝐵 = 𝐶 ) )
10 nfv 𝑥 𝐴 ∈ V
11 nfnfc1 𝑥 𝑥 𝐶
12 10 11 nfan 𝑥 ( 𝐴 ∈ V ∧ 𝑥 𝐶 )
13 nfcsb1v 𝑥 𝐴 / 𝑥 𝐵
14 13 a1i ( ( 𝐴 ∈ V ∧ 𝑥 𝐶 ) → 𝑥 𝐴 / 𝑥 𝐵 )
15 simpr ( ( 𝐴 ∈ V ∧ 𝑥 𝐶 ) → 𝑥 𝐶 )
16 14 15 nfeqd ( ( 𝐴 ∈ V ∧ 𝑥 𝐶 ) → Ⅎ 𝑥 𝐴 / 𝑥 𝐵 = 𝐶 )
17 4 9 12 16 sbciedf ( ( 𝐴 ∈ V ∧ 𝑥 𝐶 ) → ( [ 𝐴 / 𝑥 ] ( 𝑥 = 𝐴𝐵 = 𝐶 ) ↔ 𝐴 / 𝑥 𝐵 = 𝐶 ) )
18 3 17 sylibd ( ( 𝐴 ∈ V ∧ 𝑥 𝐶 ) → ( ∀ 𝑥 ( 𝑥 = 𝐴𝐵 = 𝐶 ) → 𝐴 / 𝑥 𝐵 = 𝐶 ) )
19 13 a1i ( 𝑥 𝐶 𝑥 𝐴 / 𝑥 𝐵 )
20 id ( 𝑥 𝐶 𝑥 𝐶 )
21 19 20 nfeqd ( 𝑥 𝐶 → Ⅎ 𝑥 𝐴 / 𝑥 𝐵 = 𝐶 )
22 11 21 nfan1 𝑥 ( 𝑥 𝐶 𝐴 / 𝑥 𝐵 = 𝐶 )
23 7 biimprcd ( 𝐴 / 𝑥 𝐵 = 𝐶 → ( 𝑥 = 𝐴𝐵 = 𝐶 ) )
24 23 adantl ( ( 𝑥 𝐶 𝐴 / 𝑥 𝐵 = 𝐶 ) → ( 𝑥 = 𝐴𝐵 = 𝐶 ) )
25 22 24 alrimi ( ( 𝑥 𝐶 𝐴 / 𝑥 𝐵 = 𝐶 ) → ∀ 𝑥 ( 𝑥 = 𝐴𝐵 = 𝐶 ) )
26 25 ex ( 𝑥 𝐶 → ( 𝐴 / 𝑥 𝐵 = 𝐶 → ∀ 𝑥 ( 𝑥 = 𝐴𝐵 = 𝐶 ) ) )
27 26 adantl ( ( 𝐴 ∈ V ∧ 𝑥 𝐶 ) → ( 𝐴 / 𝑥 𝐵 = 𝐶 → ∀ 𝑥 ( 𝑥 = 𝐴𝐵 = 𝐶 ) ) )
28 18 27 impbid ( ( 𝐴 ∈ V ∧ 𝑥 𝐶 ) → ( ∀ 𝑥 ( 𝑥 = 𝐴𝐵 = 𝐶 ) ↔ 𝐴 / 𝑥 𝐵 = 𝐶 ) )
29 1 28 sylan ( ( 𝐴𝑉 𝑥 𝐶 ) → ( ∀ 𝑥 ( 𝑥 = 𝐴𝐵 = 𝐶 ) ↔ 𝐴 / 𝑥 𝐵 = 𝐶 ) )