| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elex |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ V ) |
| 2 |
|
spsbc |
⊢ ( 𝐴 ∈ V → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) → [ 𝐴 / 𝑥 ] ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) ) ) |
| 3 |
2
|
adantr |
⊢ ( ( 𝐴 ∈ V ∧ Ⅎ 𝑥 𝐶 ) → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) → [ 𝐴 / 𝑥 ] ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) ) ) |
| 4 |
|
simpl |
⊢ ( ( 𝐴 ∈ V ∧ Ⅎ 𝑥 𝐶 ) → 𝐴 ∈ V ) |
| 5 |
|
biimt |
⊢ ( 𝑥 = 𝐴 → ( 𝐵 = 𝐶 ↔ ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) ) ) |
| 6 |
|
csbeq1a |
⊢ ( 𝑥 = 𝐴 → 𝐵 = ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) |
| 7 |
6
|
eqeq1d |
⊢ ( 𝑥 = 𝐴 → ( 𝐵 = 𝐶 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = 𝐶 ) ) |
| 8 |
5 7
|
bitr3d |
⊢ ( 𝑥 = 𝐴 → ( ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = 𝐶 ) ) |
| 9 |
8
|
adantl |
⊢ ( ( ( 𝐴 ∈ V ∧ Ⅎ 𝑥 𝐶 ) ∧ 𝑥 = 𝐴 ) → ( ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = 𝐶 ) ) |
| 10 |
|
nfv |
⊢ Ⅎ 𝑥 𝐴 ∈ V |
| 11 |
|
nfnfc1 |
⊢ Ⅎ 𝑥 Ⅎ 𝑥 𝐶 |
| 12 |
10 11
|
nfan |
⊢ Ⅎ 𝑥 ( 𝐴 ∈ V ∧ Ⅎ 𝑥 𝐶 ) |
| 13 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝐴 / 𝑥 ⦌ 𝐵 |
| 14 |
13
|
a1i |
⊢ ( ( 𝐴 ∈ V ∧ Ⅎ 𝑥 𝐶 ) → Ⅎ 𝑥 ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) |
| 15 |
|
simpr |
⊢ ( ( 𝐴 ∈ V ∧ Ⅎ 𝑥 𝐶 ) → Ⅎ 𝑥 𝐶 ) |
| 16 |
14 15
|
nfeqd |
⊢ ( ( 𝐴 ∈ V ∧ Ⅎ 𝑥 𝐶 ) → Ⅎ 𝑥 ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = 𝐶 ) |
| 17 |
4 9 12 16
|
sbciedf |
⊢ ( ( 𝐴 ∈ V ∧ Ⅎ 𝑥 𝐶 ) → ( [ 𝐴 / 𝑥 ] ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = 𝐶 ) ) |
| 18 |
3 17
|
sylibd |
⊢ ( ( 𝐴 ∈ V ∧ Ⅎ 𝑥 𝐶 ) → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) → ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = 𝐶 ) ) |
| 19 |
13
|
a1i |
⊢ ( Ⅎ 𝑥 𝐶 → Ⅎ 𝑥 ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) |
| 20 |
|
id |
⊢ ( Ⅎ 𝑥 𝐶 → Ⅎ 𝑥 𝐶 ) |
| 21 |
19 20
|
nfeqd |
⊢ ( Ⅎ 𝑥 𝐶 → Ⅎ 𝑥 ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = 𝐶 ) |
| 22 |
11 21
|
nfan1 |
⊢ Ⅎ 𝑥 ( Ⅎ 𝑥 𝐶 ∧ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = 𝐶 ) |
| 23 |
7
|
biimprcd |
⊢ ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = 𝐶 → ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) ) |
| 24 |
23
|
adantl |
⊢ ( ( Ⅎ 𝑥 𝐶 ∧ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = 𝐶 ) → ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) ) |
| 25 |
22 24
|
alrimi |
⊢ ( ( Ⅎ 𝑥 𝐶 ∧ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = 𝐶 ) → ∀ 𝑥 ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) ) |
| 26 |
25
|
ex |
⊢ ( Ⅎ 𝑥 𝐶 → ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = 𝐶 → ∀ 𝑥 ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) ) ) |
| 27 |
26
|
adantl |
⊢ ( ( 𝐴 ∈ V ∧ Ⅎ 𝑥 𝐶 ) → ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = 𝐶 → ∀ 𝑥 ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) ) ) |
| 28 |
18 27
|
impbid |
⊢ ( ( 𝐴 ∈ V ∧ Ⅎ 𝑥 𝐶 ) → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = 𝐶 ) ) |
| 29 |
1 28
|
sylan |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ Ⅎ 𝑥 𝐶 ) → ( ∀ 𝑥 ( 𝑥 = 𝐴 → 𝐵 = 𝐶 ) ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = 𝐶 ) ) |