Step |
Hyp |
Ref |
Expression |
1 |
|
csbied.1 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
2 |
|
csbied.2 |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → 𝐵 = 𝐶 ) |
3 |
|
df-csb |
⊢ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 } |
4 |
2
|
eleq2d |
⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → ( 𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐶 ) ) |
5 |
1 4
|
sbcied |
⊢ ( 𝜑 → ( [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐶 ) ) |
6 |
5
|
alrimiv |
⊢ ( 𝜑 → ∀ 𝑧 ( [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐶 ) ) |
7 |
|
df-clab |
⊢ ( 𝑧 ∈ { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 } ↔ [ 𝑧 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 ) |
8 |
|
eleq1w |
⊢ ( 𝑦 = 𝑧 → ( 𝑦 ∈ 𝐵 ↔ 𝑧 ∈ 𝐵 ) ) |
9 |
8
|
sbcbidv |
⊢ ( 𝑦 = 𝑧 → ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 ↔ [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝐵 ) ) |
10 |
9
|
sbievw |
⊢ ( [ 𝑧 / 𝑦 ] [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 ↔ [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝐵 ) |
11 |
7 10
|
bitr2i |
⊢ ( [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝐵 ↔ 𝑧 ∈ { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 } ) |
12 |
11
|
bibi1i |
⊢ ( ( [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐶 ) ↔ ( 𝑧 ∈ { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 } ↔ 𝑧 ∈ 𝐶 ) ) |
13 |
12
|
biimpi |
⊢ ( ( [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝐵 ↔ 𝑧 ∈ 𝐶 ) → ( 𝑧 ∈ { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 } ↔ 𝑧 ∈ 𝐶 ) ) |
14 |
6 13
|
sylg |
⊢ ( 𝜑 → ∀ 𝑧 ( 𝑧 ∈ { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 } ↔ 𝑧 ∈ 𝐶 ) ) |
15 |
|
dfcleq |
⊢ ( { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 } = 𝐶 ↔ ∀ 𝑧 ( 𝑧 ∈ { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 } ↔ 𝑧 ∈ 𝐶 ) ) |
16 |
14 15
|
sylibr |
⊢ ( 𝜑 → { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 } = 𝐶 ) |
17 |
3 16
|
eqtrid |
⊢ ( 𝜑 → ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = 𝐶 ) |