Metamath Proof Explorer


Theorem csbied2

Description: Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Hypotheses csbied2.1 ( 𝜑𝐴𝑉 )
csbied2.2 ( 𝜑𝐴 = 𝐵 )
csbied2.3 ( ( 𝜑𝑥 = 𝐵 ) → 𝐶 = 𝐷 )
Assertion csbied2 ( 𝜑 𝐴 / 𝑥 𝐶 = 𝐷 )

Proof

Step Hyp Ref Expression
1 csbied2.1 ( 𝜑𝐴𝑉 )
2 csbied2.2 ( 𝜑𝐴 = 𝐵 )
3 csbied2.3 ( ( 𝜑𝑥 = 𝐵 ) → 𝐶 = 𝐷 )
4 id ( 𝑥 = 𝐴𝑥 = 𝐴 )
5 4 2 sylan9eqr ( ( 𝜑𝑥 = 𝐴 ) → 𝑥 = 𝐵 )
6 5 3 syldan ( ( 𝜑𝑥 = 𝐴 ) → 𝐶 = 𝐷 )
7 1 6 csbied ( 𝜑 𝐴 / 𝑥 𝐶 = 𝐷 )