Description: Conversion of implicit substitution to explicit class substitution, deduction form. (Contributed by Mario Carneiro, 2-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | csbied2.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
csbied2.2 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | ||
csbied2.3 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐵 ) → 𝐶 = 𝐷 ) | ||
Assertion | csbied2 | ⊢ ( 𝜑 → ⦋ 𝐴 / 𝑥 ⦌ 𝐶 = 𝐷 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbied2.1 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) | |
2 | csbied2.2 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
3 | csbied2.3 | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐵 ) → 𝐶 = 𝐷 ) | |
4 | id | ⊢ ( 𝑥 = 𝐴 → 𝑥 = 𝐴 ) | |
5 | 4 2 | sylan9eqr | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → 𝑥 = 𝐵 ) |
6 | 5 3 | syldan | ⊢ ( ( 𝜑 ∧ 𝑥 = 𝐴 ) → 𝐶 = 𝐷 ) |
7 | 1 6 | csbied | ⊢ ( 𝜑 → ⦋ 𝐴 / 𝑥 ⦌ 𝐶 = 𝐷 ) |