Metamath Proof Explorer


Theorem csbiedf

Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by Mario Carneiro, 13-Oct-2016)

Ref Expression
Hypotheses csbiedf.1 𝑥 𝜑
csbiedf.2 ( 𝜑 𝑥 𝐶 )
csbiedf.3 ( 𝜑𝐴𝑉 )
csbiedf.4 ( ( 𝜑𝑥 = 𝐴 ) → 𝐵 = 𝐶 )
Assertion csbiedf ( 𝜑 𝐴 / 𝑥 𝐵 = 𝐶 )

Proof

Step Hyp Ref Expression
1 csbiedf.1 𝑥 𝜑
2 csbiedf.2 ( 𝜑 𝑥 𝐶 )
3 csbiedf.3 ( 𝜑𝐴𝑉 )
4 csbiedf.4 ( ( 𝜑𝑥 = 𝐴 ) → 𝐵 = 𝐶 )
5 4 ex ( 𝜑 → ( 𝑥 = 𝐴𝐵 = 𝐶 ) )
6 1 5 alrimi ( 𝜑 → ∀ 𝑥 ( 𝑥 = 𝐴𝐵 = 𝐶 ) )
7 csbiebt ( ( 𝐴𝑉 𝑥 𝐶 ) → ( ∀ 𝑥 ( 𝑥 = 𝐴𝐵 = 𝐶 ) ↔ 𝐴 / 𝑥 𝐵 = 𝐶 ) )
8 3 2 7 syl2anc ( 𝜑 → ( ∀ 𝑥 ( 𝑥 = 𝐴𝐵 = 𝐶 ) ↔ 𝐴 / 𝑥 𝐵 = 𝐶 ) )
9 6 8 mpbid ( 𝜑 𝐴 / 𝑥 𝐵 = 𝐶 )