Metamath Proof Explorer


Theorem csbief

Description: Conversion of implicit substitution to explicit substitution into a class. (Contributed by NM, 26-Nov-2005) (Revised by Mario Carneiro, 13-Oct-2016)

Ref Expression
Hypotheses csbief.1 𝐴 ∈ V
csbief.2 𝑥 𝐶
csbief.3 ( 𝑥 = 𝐴𝐵 = 𝐶 )
Assertion csbief 𝐴 / 𝑥 𝐵 = 𝐶

Proof

Step Hyp Ref Expression
1 csbief.1 𝐴 ∈ V
2 csbief.2 𝑥 𝐶
3 csbief.3 ( 𝑥 = 𝐴𝐵 = 𝐶 )
4 2 a1i ( 𝐴 ∈ V → 𝑥 𝐶 )
5 4 3 csbiegf ( 𝐴 ∈ V → 𝐴 / 𝑥 𝐵 = 𝐶 )
6 1 5 ax-mp 𝐴 / 𝑥 𝐵 = 𝐶