Step |
Hyp |
Ref |
Expression |
1 |
|
csbeq1 |
⊢ ( 𝑦 = 𝐴 → ⦋ 𝑦 / 𝑥 ⦌ if ( 𝜑 , 𝐵 , 𝐶 ) = ⦋ 𝐴 / 𝑥 ⦌ if ( 𝜑 , 𝐵 , 𝐶 ) ) |
2 |
|
dfsbcq2 |
⊢ ( 𝑦 = 𝐴 → ( [ 𝑦 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
3 |
|
csbeq1 |
⊢ ( 𝑦 = 𝐴 → ⦋ 𝑦 / 𝑥 ⦌ 𝐵 = ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) |
4 |
|
csbeq1 |
⊢ ( 𝑦 = 𝐴 → ⦋ 𝑦 / 𝑥 ⦌ 𝐶 = ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) |
5 |
2 3 4
|
ifbieq12d |
⊢ ( 𝑦 = 𝐴 → if ( [ 𝑦 / 𝑥 ] 𝜑 , ⦋ 𝑦 / 𝑥 ⦌ 𝐵 , ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) = if ( [ 𝐴 / 𝑥 ] 𝜑 , ⦋ 𝐴 / 𝑥 ⦌ 𝐵 , ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) |
6 |
1 5
|
eqeq12d |
⊢ ( 𝑦 = 𝐴 → ( ⦋ 𝑦 / 𝑥 ⦌ if ( 𝜑 , 𝐵 , 𝐶 ) = if ( [ 𝑦 / 𝑥 ] 𝜑 , ⦋ 𝑦 / 𝑥 ⦌ 𝐵 , ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) ↔ ⦋ 𝐴 / 𝑥 ⦌ if ( 𝜑 , 𝐵 , 𝐶 ) = if ( [ 𝐴 / 𝑥 ] 𝜑 , ⦋ 𝐴 / 𝑥 ⦌ 𝐵 , ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) ) |
7 |
|
vex |
⊢ 𝑦 ∈ V |
8 |
|
nfs1v |
⊢ Ⅎ 𝑥 [ 𝑦 / 𝑥 ] 𝜑 |
9 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐵 |
10 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐶 |
11 |
8 9 10
|
nfif |
⊢ Ⅎ 𝑥 if ( [ 𝑦 / 𝑥 ] 𝜑 , ⦋ 𝑦 / 𝑥 ⦌ 𝐵 , ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) |
12 |
|
sbequ12 |
⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ [ 𝑦 / 𝑥 ] 𝜑 ) ) |
13 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑦 → 𝐵 = ⦋ 𝑦 / 𝑥 ⦌ 𝐵 ) |
14 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑦 → 𝐶 = ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) |
15 |
12 13 14
|
ifbieq12d |
⊢ ( 𝑥 = 𝑦 → if ( 𝜑 , 𝐵 , 𝐶 ) = if ( [ 𝑦 / 𝑥 ] 𝜑 , ⦋ 𝑦 / 𝑥 ⦌ 𝐵 , ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) ) |
16 |
7 11 15
|
csbief |
⊢ ⦋ 𝑦 / 𝑥 ⦌ if ( 𝜑 , 𝐵 , 𝐶 ) = if ( [ 𝑦 / 𝑥 ] 𝜑 , ⦋ 𝑦 / 𝑥 ⦌ 𝐵 , ⦋ 𝑦 / 𝑥 ⦌ 𝐶 ) |
17 |
6 16
|
vtoclg |
⊢ ( 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ if ( 𝜑 , 𝐵 , 𝐶 ) = if ( [ 𝐴 / 𝑥 ] 𝜑 , ⦋ 𝐴 / 𝑥 ⦌ 𝐵 , ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) |
18 |
|
csbprc |
⊢ ( ¬ 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ if ( 𝜑 , 𝐵 , 𝐶 ) = ∅ ) |
19 |
|
csbprc |
⊢ ( ¬ 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = ∅ ) |
20 |
|
csbprc |
⊢ ( ¬ 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ 𝐶 = ∅ ) |
21 |
19 20
|
ifeq12d |
⊢ ( ¬ 𝐴 ∈ V → if ( [ 𝐴 / 𝑥 ] 𝜑 , ⦋ 𝐴 / 𝑥 ⦌ 𝐵 , ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) = if ( [ 𝐴 / 𝑥 ] 𝜑 , ∅ , ∅ ) ) |
22 |
|
ifid |
⊢ if ( [ 𝐴 / 𝑥 ] 𝜑 , ∅ , ∅ ) = ∅ |
23 |
21 22
|
eqtr2di |
⊢ ( ¬ 𝐴 ∈ V → ∅ = if ( [ 𝐴 / 𝑥 ] 𝜑 , ⦋ 𝐴 / 𝑥 ⦌ 𝐵 , ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) |
24 |
18 23
|
eqtrd |
⊢ ( ¬ 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ if ( 𝜑 , 𝐵 , 𝐶 ) = if ( [ 𝐴 / 𝑥 ] 𝜑 , ⦋ 𝐴 / 𝑥 ⦌ 𝐵 , ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) |
25 |
17 24
|
pm2.61i |
⊢ ⦋ 𝐴 / 𝑥 ⦌ if ( 𝜑 , 𝐵 , 𝐶 ) = if ( [ 𝐴 / 𝑥 ] 𝜑 , ⦋ 𝐴 / 𝑥 ⦌ 𝐵 , ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) |