Metamath Proof Explorer


Theorem csbima12

Description: Move class substitution in and out of the image of a function. (Contributed by FL, 15-Dec-2006) (Revised by NM, 20-Aug-2018)

Ref Expression
Assertion csbima12 𝐴 / 𝑥 ( 𝐹𝐵 ) = ( 𝐴 / 𝑥 𝐹 𝐴 / 𝑥 𝐵 )

Proof

Step Hyp Ref Expression
1 csbeq1 ( 𝑦 = 𝐴 𝑦 / 𝑥 ( 𝐹𝐵 ) = 𝐴 / 𝑥 ( 𝐹𝐵 ) )
2 csbeq1 ( 𝑦 = 𝐴 𝑦 / 𝑥 𝐹 = 𝐴 / 𝑥 𝐹 )
3 csbeq1 ( 𝑦 = 𝐴 𝑦 / 𝑥 𝐵 = 𝐴 / 𝑥 𝐵 )
4 2 3 imaeq12d ( 𝑦 = 𝐴 → ( 𝑦 / 𝑥 𝐹 𝑦 / 𝑥 𝐵 ) = ( 𝐴 / 𝑥 𝐹 𝐴 / 𝑥 𝐵 ) )
5 1 4 eqeq12d ( 𝑦 = 𝐴 → ( 𝑦 / 𝑥 ( 𝐹𝐵 ) = ( 𝑦 / 𝑥 𝐹 𝑦 / 𝑥 𝐵 ) ↔ 𝐴 / 𝑥 ( 𝐹𝐵 ) = ( 𝐴 / 𝑥 𝐹 𝐴 / 𝑥 𝐵 ) ) )
6 vex 𝑦 ∈ V
7 nfcsb1v 𝑥 𝑦 / 𝑥 𝐹
8 nfcsb1v 𝑥 𝑦 / 𝑥 𝐵
9 7 8 nfima 𝑥 ( 𝑦 / 𝑥 𝐹 𝑦 / 𝑥 𝐵 )
10 csbeq1a ( 𝑥 = 𝑦𝐹 = 𝑦 / 𝑥 𝐹 )
11 csbeq1a ( 𝑥 = 𝑦𝐵 = 𝑦 / 𝑥 𝐵 )
12 10 11 imaeq12d ( 𝑥 = 𝑦 → ( 𝐹𝐵 ) = ( 𝑦 / 𝑥 𝐹 𝑦 / 𝑥 𝐵 ) )
13 6 9 12 csbief 𝑦 / 𝑥 ( 𝐹𝐵 ) = ( 𝑦 / 𝑥 𝐹 𝑦 / 𝑥 𝐵 )
14 5 13 vtoclg ( 𝐴 ∈ V → 𝐴 / 𝑥 ( 𝐹𝐵 ) = ( 𝐴 / 𝑥 𝐹 𝐴 / 𝑥 𝐵 ) )
15 csbprc ( ¬ 𝐴 ∈ V → 𝐴 / 𝑥 ( 𝐹𝐵 ) = ∅ )
16 csbprc ( ¬ 𝐴 ∈ V → 𝐴 / 𝑥 𝐵 = ∅ )
17 16 imaeq2d ( ¬ 𝐴 ∈ V → ( 𝐴 / 𝑥 𝐹 𝐴 / 𝑥 𝐵 ) = ( 𝐴 / 𝑥 𝐹 “ ∅ ) )
18 ima0 ( 𝐴 / 𝑥 𝐹 “ ∅ ) = ∅
19 17 18 eqtr2di ( ¬ 𝐴 ∈ V → ∅ = ( 𝐴 / 𝑥 𝐹 𝐴 / 𝑥 𝐵 ) )
20 15 19 eqtrd ( ¬ 𝐴 ∈ V → 𝐴 / 𝑥 ( 𝐹𝐵 ) = ( 𝐴 / 𝑥 𝐹 𝐴 / 𝑥 𝐵 ) )
21 14 20 pm2.61i 𝐴 / 𝑥 ( 𝐹𝐵 ) = ( 𝐴 / 𝑥 𝐹 𝐴 / 𝑥 𝐵 )