Step |
Hyp |
Ref |
Expression |
1 |
|
idn1 |
⊢ ( 𝐴 ∈ 𝐶 ▶ 𝐴 ∈ 𝐶 ) |
2 |
|
csbres |
⊢ ⦋ 𝐴 / 𝑥 ⦌ ( 𝐹 ↾ 𝐵 ) = ( ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ↾ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) |
3 |
2
|
a1i |
⊢ ( 𝐴 ∈ 𝐶 → ⦋ 𝐴 / 𝑥 ⦌ ( 𝐹 ↾ 𝐵 ) = ( ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ↾ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) ) |
4 |
1 3
|
e1a |
⊢ ( 𝐴 ∈ 𝐶 ▶ ⦋ 𝐴 / 𝑥 ⦌ ( 𝐹 ↾ 𝐵 ) = ( ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ↾ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) ) |
5 |
|
rneq |
⊢ ( ⦋ 𝐴 / 𝑥 ⦌ ( 𝐹 ↾ 𝐵 ) = ( ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ↾ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) → ran ⦋ 𝐴 / 𝑥 ⦌ ( 𝐹 ↾ 𝐵 ) = ran ( ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ↾ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) ) |
6 |
4 5
|
e1a |
⊢ ( 𝐴 ∈ 𝐶 ▶ ran ⦋ 𝐴 / 𝑥 ⦌ ( 𝐹 ↾ 𝐵 ) = ran ( ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ↾ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) ) |
7 |
|
csbrn |
⊢ ⦋ 𝐴 / 𝑥 ⦌ ran ( 𝐹 ↾ 𝐵 ) = ran ⦋ 𝐴 / 𝑥 ⦌ ( 𝐹 ↾ 𝐵 ) |
8 |
7
|
a1i |
⊢ ( 𝐴 ∈ 𝐶 → ⦋ 𝐴 / 𝑥 ⦌ ran ( 𝐹 ↾ 𝐵 ) = ran ⦋ 𝐴 / 𝑥 ⦌ ( 𝐹 ↾ 𝐵 ) ) |
9 |
1 8
|
e1a |
⊢ ( 𝐴 ∈ 𝐶 ▶ ⦋ 𝐴 / 𝑥 ⦌ ran ( 𝐹 ↾ 𝐵 ) = ran ⦋ 𝐴 / 𝑥 ⦌ ( 𝐹 ↾ 𝐵 ) ) |
10 |
|
eqeq2 |
⊢ ( ran ⦋ 𝐴 / 𝑥 ⦌ ( 𝐹 ↾ 𝐵 ) = ran ( ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ↾ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) → ( ⦋ 𝐴 / 𝑥 ⦌ ran ( 𝐹 ↾ 𝐵 ) = ran ⦋ 𝐴 / 𝑥 ⦌ ( 𝐹 ↾ 𝐵 ) ↔ ⦋ 𝐴 / 𝑥 ⦌ ran ( 𝐹 ↾ 𝐵 ) = ran ( ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ↾ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) ) ) |
11 |
10
|
biimpd |
⊢ ( ran ⦋ 𝐴 / 𝑥 ⦌ ( 𝐹 ↾ 𝐵 ) = ran ( ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ↾ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) → ( ⦋ 𝐴 / 𝑥 ⦌ ran ( 𝐹 ↾ 𝐵 ) = ran ⦋ 𝐴 / 𝑥 ⦌ ( 𝐹 ↾ 𝐵 ) → ⦋ 𝐴 / 𝑥 ⦌ ran ( 𝐹 ↾ 𝐵 ) = ran ( ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ↾ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) ) ) |
12 |
6 9 11
|
e11 |
⊢ ( 𝐴 ∈ 𝐶 ▶ ⦋ 𝐴 / 𝑥 ⦌ ran ( 𝐹 ↾ 𝐵 ) = ran ( ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ↾ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) ) |
13 |
|
df-ima |
⊢ ( 𝐹 “ 𝐵 ) = ran ( 𝐹 ↾ 𝐵 ) |
14 |
13
|
ax-gen |
⊢ ∀ 𝑥 ( 𝐹 “ 𝐵 ) = ran ( 𝐹 ↾ 𝐵 ) |
15 |
|
csbeq2 |
⊢ ( ∀ 𝑥 ( 𝐹 “ 𝐵 ) = ran ( 𝐹 ↾ 𝐵 ) → ⦋ 𝐴 / 𝑥 ⦌ ( 𝐹 “ 𝐵 ) = ⦋ 𝐴 / 𝑥 ⦌ ran ( 𝐹 ↾ 𝐵 ) ) |
16 |
15
|
a1i |
⊢ ( 𝐴 ∈ 𝐶 → ( ∀ 𝑥 ( 𝐹 “ 𝐵 ) = ran ( 𝐹 ↾ 𝐵 ) → ⦋ 𝐴 / 𝑥 ⦌ ( 𝐹 “ 𝐵 ) = ⦋ 𝐴 / 𝑥 ⦌ ran ( 𝐹 ↾ 𝐵 ) ) ) |
17 |
1 14 16
|
e10 |
⊢ ( 𝐴 ∈ 𝐶 ▶ ⦋ 𝐴 / 𝑥 ⦌ ( 𝐹 “ 𝐵 ) = ⦋ 𝐴 / 𝑥 ⦌ ran ( 𝐹 ↾ 𝐵 ) ) |
18 |
|
eqeq2 |
⊢ ( ⦋ 𝐴 / 𝑥 ⦌ ran ( 𝐹 ↾ 𝐵 ) = ran ( ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ↾ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) → ( ⦋ 𝐴 / 𝑥 ⦌ ( 𝐹 “ 𝐵 ) = ⦋ 𝐴 / 𝑥 ⦌ ran ( 𝐹 ↾ 𝐵 ) ↔ ⦋ 𝐴 / 𝑥 ⦌ ( 𝐹 “ 𝐵 ) = ran ( ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ↾ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) ) ) |
19 |
18
|
biimpd |
⊢ ( ⦋ 𝐴 / 𝑥 ⦌ ran ( 𝐹 ↾ 𝐵 ) = ran ( ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ↾ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) → ( ⦋ 𝐴 / 𝑥 ⦌ ( 𝐹 “ 𝐵 ) = ⦋ 𝐴 / 𝑥 ⦌ ran ( 𝐹 ↾ 𝐵 ) → ⦋ 𝐴 / 𝑥 ⦌ ( 𝐹 “ 𝐵 ) = ran ( ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ↾ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) ) ) |
20 |
12 17 19
|
e11 |
⊢ ( 𝐴 ∈ 𝐶 ▶ ⦋ 𝐴 / 𝑥 ⦌ ( 𝐹 “ 𝐵 ) = ran ( ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ↾ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) ) |
21 |
|
df-ima |
⊢ ( ⦋ 𝐴 / 𝑥 ⦌ 𝐹 “ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) = ran ( ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ↾ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) |
22 |
|
eqeq2 |
⊢ ( ( ⦋ 𝐴 / 𝑥 ⦌ 𝐹 “ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) = ran ( ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ↾ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) → ( ⦋ 𝐴 / 𝑥 ⦌ ( 𝐹 “ 𝐵 ) = ( ⦋ 𝐴 / 𝑥 ⦌ 𝐹 “ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) ↔ ⦋ 𝐴 / 𝑥 ⦌ ( 𝐹 “ 𝐵 ) = ran ( ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ↾ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) ) ) |
23 |
22
|
biimprcd |
⊢ ( ⦋ 𝐴 / 𝑥 ⦌ ( 𝐹 “ 𝐵 ) = ran ( ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ↾ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) → ( ( ⦋ 𝐴 / 𝑥 ⦌ 𝐹 “ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) = ran ( ⦋ 𝐴 / 𝑥 ⦌ 𝐹 ↾ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) → ⦋ 𝐴 / 𝑥 ⦌ ( 𝐹 “ 𝐵 ) = ( ⦋ 𝐴 / 𝑥 ⦌ 𝐹 “ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) ) ) |
24 |
20 21 23
|
e10 |
⊢ ( 𝐴 ∈ 𝐶 ▶ ⦋ 𝐴 / 𝑥 ⦌ ( 𝐹 “ 𝐵 ) = ( ⦋ 𝐴 / 𝑥 ⦌ 𝐹 “ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) ) |
25 |
24
|
in1 |
⊢ ( 𝐴 ∈ 𝐶 → ⦋ 𝐴 / 𝑥 ⦌ ( 𝐹 “ 𝐵 ) = ( ⦋ 𝐴 / 𝑥 ⦌ 𝐹 “ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) ) |