Step |
Hyp |
Ref |
Expression |
1 |
|
idn1 |
⊢ ( 𝐴 ∈ 𝐵 ▶ 𝐴 ∈ 𝐵 ) |
2 |
|
df-in |
⊢ ( 𝐶 ∩ 𝐷 ) = { 𝑦 ∣ ( 𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) } |
3 |
2
|
ax-gen |
⊢ ∀ 𝑥 ( 𝐶 ∩ 𝐷 ) = { 𝑦 ∣ ( 𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) } |
4 |
|
spsbc |
⊢ ( 𝐴 ∈ 𝐵 → ( ∀ 𝑥 ( 𝐶 ∩ 𝐷 ) = { 𝑦 ∣ ( 𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) } → [ 𝐴 / 𝑥 ] ( 𝐶 ∩ 𝐷 ) = { 𝑦 ∣ ( 𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) } ) ) |
5 |
1 3 4
|
e10 |
⊢ ( 𝐴 ∈ 𝐵 ▶ [ 𝐴 / 𝑥 ] ( 𝐶 ∩ 𝐷 ) = { 𝑦 ∣ ( 𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) } ) |
6 |
|
sbceqg |
⊢ ( 𝐴 ∈ 𝐵 → ( [ 𝐴 / 𝑥 ] ( 𝐶 ∩ 𝐷 ) = { 𝑦 ∣ ( 𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) } ↔ ⦋ 𝐴 / 𝑥 ⦌ ( 𝐶 ∩ 𝐷 ) = ⦋ 𝐴 / 𝑥 ⦌ { 𝑦 ∣ ( 𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) } ) ) |
7 |
6
|
biimpd |
⊢ ( 𝐴 ∈ 𝐵 → ( [ 𝐴 / 𝑥 ] ( 𝐶 ∩ 𝐷 ) = { 𝑦 ∣ ( 𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) } → ⦋ 𝐴 / 𝑥 ⦌ ( 𝐶 ∩ 𝐷 ) = ⦋ 𝐴 / 𝑥 ⦌ { 𝑦 ∣ ( 𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) } ) ) |
8 |
1 5 7
|
e11 |
⊢ ( 𝐴 ∈ 𝐵 ▶ ⦋ 𝐴 / 𝑥 ⦌ ( 𝐶 ∩ 𝐷 ) = ⦋ 𝐴 / 𝑥 ⦌ { 𝑦 ∣ ( 𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) } ) |
9 |
|
csbab |
⊢ ⦋ 𝐴 / 𝑥 ⦌ { 𝑦 ∣ ( 𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) } = { 𝑦 ∣ [ 𝐴 / 𝑥 ] ( 𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) } |
10 |
9
|
a1i |
⊢ ( 𝐴 ∈ 𝐵 → ⦋ 𝐴 / 𝑥 ⦌ { 𝑦 ∣ ( 𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) } = { 𝑦 ∣ [ 𝐴 / 𝑥 ] ( 𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) } ) |
11 |
1 10
|
e1a |
⊢ ( 𝐴 ∈ 𝐵 ▶ ⦋ 𝐴 / 𝑥 ⦌ { 𝑦 ∣ ( 𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) } = { 𝑦 ∣ [ 𝐴 / 𝑥 ] ( 𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) } ) |
12 |
|
eqeq1 |
⊢ ( ⦋ 𝐴 / 𝑥 ⦌ ( 𝐶 ∩ 𝐷 ) = ⦋ 𝐴 / 𝑥 ⦌ { 𝑦 ∣ ( 𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) } → ( ⦋ 𝐴 / 𝑥 ⦌ ( 𝐶 ∩ 𝐷 ) = { 𝑦 ∣ [ 𝐴 / 𝑥 ] ( 𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) } ↔ ⦋ 𝐴 / 𝑥 ⦌ { 𝑦 ∣ ( 𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) } = { 𝑦 ∣ [ 𝐴 / 𝑥 ] ( 𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) } ) ) |
13 |
12
|
biimprd |
⊢ ( ⦋ 𝐴 / 𝑥 ⦌ ( 𝐶 ∩ 𝐷 ) = ⦋ 𝐴 / 𝑥 ⦌ { 𝑦 ∣ ( 𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) } → ( ⦋ 𝐴 / 𝑥 ⦌ { 𝑦 ∣ ( 𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) } = { 𝑦 ∣ [ 𝐴 / 𝑥 ] ( 𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) } → ⦋ 𝐴 / 𝑥 ⦌ ( 𝐶 ∩ 𝐷 ) = { 𝑦 ∣ [ 𝐴 / 𝑥 ] ( 𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) } ) ) |
14 |
8 11 13
|
e11 |
⊢ ( 𝐴 ∈ 𝐵 ▶ ⦋ 𝐴 / 𝑥 ⦌ ( 𝐶 ∩ 𝐷 ) = { 𝑦 ∣ [ 𝐴 / 𝑥 ] ( 𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) } ) |
15 |
|
sbcan |
⊢ ( [ 𝐴 / 𝑥 ] ( 𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ↔ ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐶 ∧ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐷 ) ) |
16 |
15
|
a1i |
⊢ ( 𝐴 ∈ 𝐵 → ( [ 𝐴 / 𝑥 ] ( 𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ↔ ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐶 ∧ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐷 ) ) ) |
17 |
1 16
|
e1a |
⊢ ( 𝐴 ∈ 𝐵 ▶ ( [ 𝐴 / 𝑥 ] ( 𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ↔ ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐶 ∧ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐷 ) ) ) |
18 |
|
sbcel2 |
⊢ ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) |
19 |
18
|
a1i |
⊢ ( 𝐴 ∈ 𝐵 → ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) |
20 |
1 19
|
e1a |
⊢ ( 𝐴 ∈ 𝐵 ▶ ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) |
21 |
|
sbcel2 |
⊢ ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐷 ↔ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) |
22 |
21
|
a1i |
⊢ ( 𝐴 ∈ 𝐵 → ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐷 ↔ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) ) |
23 |
1 22
|
e1a |
⊢ ( 𝐴 ∈ 𝐵 ▶ ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐷 ↔ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) ) |
24 |
|
pm4.38 |
⊢ ( ( ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ∧ ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐷 ↔ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) ) → ( ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐶 ∧ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐷 ) ↔ ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ∧ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) ) ) |
25 |
24
|
ex |
⊢ ( ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐶 ↔ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) → ( ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐷 ↔ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) → ( ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐶 ∧ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐷 ) ↔ ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ∧ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) ) ) ) |
26 |
20 23 25
|
e11 |
⊢ ( 𝐴 ∈ 𝐵 ▶ ( ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐶 ∧ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐷 ) ↔ ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ∧ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) ) ) |
27 |
|
bibi1 |
⊢ ( ( [ 𝐴 / 𝑥 ] ( 𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ↔ ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐶 ∧ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐷 ) ) → ( ( [ 𝐴 / 𝑥 ] ( 𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ↔ ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ∧ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) ) ↔ ( ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐶 ∧ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐷 ) ↔ ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ∧ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) ) ) ) |
28 |
27
|
biimprd |
⊢ ( ( [ 𝐴 / 𝑥 ] ( 𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ↔ ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐶 ∧ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐷 ) ) → ( ( ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐶 ∧ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐷 ) ↔ ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ∧ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) ) → ( [ 𝐴 / 𝑥 ] ( 𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ↔ ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ∧ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) ) ) ) |
29 |
17 26 28
|
e11 |
⊢ ( 𝐴 ∈ 𝐵 ▶ ( [ 𝐴 / 𝑥 ] ( 𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ↔ ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ∧ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) ) ) |
30 |
29
|
gen11 |
⊢ ( 𝐴 ∈ 𝐵 ▶ ∀ 𝑦 ( [ 𝐴 / 𝑥 ] ( 𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ↔ ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ∧ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) ) ) |
31 |
|
abbi |
⊢ ( ∀ 𝑦 ( [ 𝐴 / 𝑥 ] ( 𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ↔ ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ∧ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) ) ↔ { 𝑦 ∣ [ 𝐴 / 𝑥 ] ( 𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) } = { 𝑦 ∣ ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ∧ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) } ) |
32 |
31
|
biimpi |
⊢ ( ∀ 𝑦 ( [ 𝐴 / 𝑥 ] ( 𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) ↔ ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ∧ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) ) → { 𝑦 ∣ [ 𝐴 / 𝑥 ] ( 𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) } = { 𝑦 ∣ ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ∧ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) } ) |
33 |
30 32
|
e1a |
⊢ ( 𝐴 ∈ 𝐵 ▶ { 𝑦 ∣ [ 𝐴 / 𝑥 ] ( 𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) } = { 𝑦 ∣ ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ∧ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) } ) |
34 |
|
eqeq1 |
⊢ ( ⦋ 𝐴 / 𝑥 ⦌ ( 𝐶 ∩ 𝐷 ) = { 𝑦 ∣ [ 𝐴 / 𝑥 ] ( 𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) } → ( ⦋ 𝐴 / 𝑥 ⦌ ( 𝐶 ∩ 𝐷 ) = { 𝑦 ∣ ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ∧ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) } ↔ { 𝑦 ∣ [ 𝐴 / 𝑥 ] ( 𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) } = { 𝑦 ∣ ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ∧ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) } ) ) |
35 |
34
|
biimprd |
⊢ ( ⦋ 𝐴 / 𝑥 ⦌ ( 𝐶 ∩ 𝐷 ) = { 𝑦 ∣ [ 𝐴 / 𝑥 ] ( 𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) } → ( { 𝑦 ∣ [ 𝐴 / 𝑥 ] ( 𝑦 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷 ) } = { 𝑦 ∣ ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ∧ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) } → ⦋ 𝐴 / 𝑥 ⦌ ( 𝐶 ∩ 𝐷 ) = { 𝑦 ∣ ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ∧ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) } ) ) |
36 |
14 33 35
|
e11 |
⊢ ( 𝐴 ∈ 𝐵 ▶ ⦋ 𝐴 / 𝑥 ⦌ ( 𝐶 ∩ 𝐷 ) = { 𝑦 ∣ ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ∧ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) } ) |
37 |
|
df-in |
⊢ ( ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) = { 𝑦 ∣ ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ∧ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) } |
38 |
|
eqeq2 |
⊢ ( ( ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) = { 𝑦 ∣ ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ∧ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) } → ( ⦋ 𝐴 / 𝑥 ⦌ ( 𝐶 ∩ 𝐷 ) = ( ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) ↔ ⦋ 𝐴 / 𝑥 ⦌ ( 𝐶 ∩ 𝐷 ) = { 𝑦 ∣ ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ∧ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) } ) ) |
39 |
38
|
biimprcd |
⊢ ( ⦋ 𝐴 / 𝑥 ⦌ ( 𝐶 ∩ 𝐷 ) = { 𝑦 ∣ ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ∧ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) } → ( ( ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) = { 𝑦 ∣ ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ∧ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) } → ⦋ 𝐴 / 𝑥 ⦌ ( 𝐶 ∩ 𝐷 ) = ( ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) ) ) |
40 |
36 37 39
|
e10 |
⊢ ( 𝐴 ∈ 𝐵 ▶ ⦋ 𝐴 / 𝑥 ⦌ ( 𝐶 ∩ 𝐷 ) = ( ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) ) |
41 |
40
|
in1 |
⊢ ( 𝐴 ∈ 𝐵 → ⦋ 𝐴 / 𝑥 ⦌ ( 𝐶 ∩ 𝐷 ) = ( ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ∩ ⦋ 𝐴 / 𝑥 ⦌ 𝐷 ) ) |