| Step |
Hyp |
Ref |
Expression |
| 1 |
|
csbeq1 |
⊢ ( 𝑧 = 𝐴 → ⦋ 𝑧 / 𝑥 ⦌ ( ℩ 𝑦 𝜑 ) = ⦋ 𝐴 / 𝑥 ⦌ ( ℩ 𝑦 𝜑 ) ) |
| 2 |
|
dfsbcq2 |
⊢ ( 𝑧 = 𝐴 → ( [ 𝑧 / 𝑥 ] 𝜑 ↔ [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 3 |
2
|
iotabidv |
⊢ ( 𝑧 = 𝐴 → ( ℩ 𝑦 [ 𝑧 / 𝑥 ] 𝜑 ) = ( ℩ 𝑦 [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 4 |
1 3
|
eqeq12d |
⊢ ( 𝑧 = 𝐴 → ( ⦋ 𝑧 / 𝑥 ⦌ ( ℩ 𝑦 𝜑 ) = ( ℩ 𝑦 [ 𝑧 / 𝑥 ] 𝜑 ) ↔ ⦋ 𝐴 / 𝑥 ⦌ ( ℩ 𝑦 𝜑 ) = ( ℩ 𝑦 [ 𝐴 / 𝑥 ] 𝜑 ) ) ) |
| 5 |
|
vex |
⊢ 𝑧 ∈ V |
| 6 |
|
nfs1v |
⊢ Ⅎ 𝑥 [ 𝑧 / 𝑥 ] 𝜑 |
| 7 |
6
|
nfiotaw |
⊢ Ⅎ 𝑥 ( ℩ 𝑦 [ 𝑧 / 𝑥 ] 𝜑 ) |
| 8 |
|
sbequ12 |
⊢ ( 𝑥 = 𝑧 → ( 𝜑 ↔ [ 𝑧 / 𝑥 ] 𝜑 ) ) |
| 9 |
8
|
iotabidv |
⊢ ( 𝑥 = 𝑧 → ( ℩ 𝑦 𝜑 ) = ( ℩ 𝑦 [ 𝑧 / 𝑥 ] 𝜑 ) ) |
| 10 |
5 7 9
|
csbief |
⊢ ⦋ 𝑧 / 𝑥 ⦌ ( ℩ 𝑦 𝜑 ) = ( ℩ 𝑦 [ 𝑧 / 𝑥 ] 𝜑 ) |
| 11 |
4 10
|
vtoclg |
⊢ ( 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ ( ℩ 𝑦 𝜑 ) = ( ℩ 𝑦 [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 12 |
|
csbprc |
⊢ ( ¬ 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ ( ℩ 𝑦 𝜑 ) = ∅ ) |
| 13 |
|
sbcex |
⊢ ( [ 𝐴 / 𝑥 ] 𝜑 → 𝐴 ∈ V ) |
| 14 |
13
|
con3i |
⊢ ( ¬ 𝐴 ∈ V → ¬ [ 𝐴 / 𝑥 ] 𝜑 ) |
| 15 |
14
|
nexdv |
⊢ ( ¬ 𝐴 ∈ V → ¬ ∃ 𝑦 [ 𝐴 / 𝑥 ] 𝜑 ) |
| 16 |
|
euex |
⊢ ( ∃! 𝑦 [ 𝐴 / 𝑥 ] 𝜑 → ∃ 𝑦 [ 𝐴 / 𝑥 ] 𝜑 ) |
| 17 |
16
|
con3i |
⊢ ( ¬ ∃ 𝑦 [ 𝐴 / 𝑥 ] 𝜑 → ¬ ∃! 𝑦 [ 𝐴 / 𝑥 ] 𝜑 ) |
| 18 |
|
iotanul |
⊢ ( ¬ ∃! 𝑦 [ 𝐴 / 𝑥 ] 𝜑 → ( ℩ 𝑦 [ 𝐴 / 𝑥 ] 𝜑 ) = ∅ ) |
| 19 |
15 17 18
|
3syl |
⊢ ( ¬ 𝐴 ∈ V → ( ℩ 𝑦 [ 𝐴 / 𝑥 ] 𝜑 ) = ∅ ) |
| 20 |
12 19
|
eqtr4d |
⊢ ( ¬ 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ ( ℩ 𝑦 𝜑 ) = ( ℩ 𝑦 [ 𝐴 / 𝑥 ] 𝜑 ) ) |
| 21 |
11 20
|
pm2.61i |
⊢ ⦋ 𝐴 / 𝑥 ⦌ ( ℩ 𝑦 𝜑 ) = ( ℩ 𝑦 [ 𝐴 / 𝑥 ] 𝜑 ) |