| Step |
Hyp |
Ref |
Expression |
| 1 |
|
csbopab |
⊢ ⦋ 𝐴 / 𝑥 ⦌ { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ 𝑌 ∧ 𝑧 = 𝑍 ) } = { 〈 𝑦 , 𝑧 〉 ∣ [ 𝐴 / 𝑥 ] ( 𝑦 ∈ 𝑌 ∧ 𝑧 = 𝑍 ) } |
| 2 |
|
sbcan |
⊢ ( [ 𝐴 / 𝑥 ] ( 𝑦 ∈ 𝑌 ∧ 𝑧 = 𝑍 ) ↔ ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝑌 ∧ [ 𝐴 / 𝑥 ] 𝑧 = 𝑍 ) ) |
| 3 |
|
sbcel12 |
⊢ ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝑌 ↔ ⦋ 𝐴 / 𝑥 ⦌ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝑌 ) |
| 4 |
|
csbconstg |
⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ 𝑦 = 𝑦 ) |
| 5 |
4
|
eleq1d |
⊢ ( 𝐴 ∈ 𝑉 → ( ⦋ 𝐴 / 𝑥 ⦌ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝑌 ↔ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝑌 ) ) |
| 6 |
3 5
|
bitrid |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝑌 ↔ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝑌 ) ) |
| 7 |
|
sbceq2g |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] 𝑧 = 𝑍 ↔ 𝑧 = ⦋ 𝐴 / 𝑥 ⦌ 𝑍 ) ) |
| 8 |
6 7
|
anbi12d |
⊢ ( 𝐴 ∈ 𝑉 → ( ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝑌 ∧ [ 𝐴 / 𝑥 ] 𝑧 = 𝑍 ) ↔ ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝑌 ∧ 𝑧 = ⦋ 𝐴 / 𝑥 ⦌ 𝑍 ) ) ) |
| 9 |
2 8
|
bitrid |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] ( 𝑦 ∈ 𝑌 ∧ 𝑧 = 𝑍 ) ↔ ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝑌 ∧ 𝑧 = ⦋ 𝐴 / 𝑥 ⦌ 𝑍 ) ) ) |
| 10 |
9
|
opabbidv |
⊢ ( 𝐴 ∈ 𝑉 → { 〈 𝑦 , 𝑧 〉 ∣ [ 𝐴 / 𝑥 ] ( 𝑦 ∈ 𝑌 ∧ 𝑧 = 𝑍 ) } = { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝑌 ∧ 𝑧 = ⦋ 𝐴 / 𝑥 ⦌ 𝑍 ) } ) |
| 11 |
1 10
|
eqtrid |
⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ 𝑌 ∧ 𝑧 = 𝑍 ) } = { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝑌 ∧ 𝑧 = ⦋ 𝐴 / 𝑥 ⦌ 𝑍 ) } ) |
| 12 |
|
df-mpt |
⊢ ( 𝑦 ∈ 𝑌 ↦ 𝑍 ) = { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ 𝑌 ∧ 𝑧 = 𝑍 ) } |
| 13 |
12
|
csbeq2i |
⊢ ⦋ 𝐴 / 𝑥 ⦌ ( 𝑦 ∈ 𝑌 ↦ 𝑍 ) = ⦋ 𝐴 / 𝑥 ⦌ { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ 𝑌 ∧ 𝑧 = 𝑍 ) } |
| 14 |
|
df-mpt |
⊢ ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝑌 ↦ ⦋ 𝐴 / 𝑥 ⦌ 𝑍 ) = { 〈 𝑦 , 𝑧 〉 ∣ ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝑌 ∧ 𝑧 = ⦋ 𝐴 / 𝑥 ⦌ 𝑍 ) } |
| 15 |
11 13 14
|
3eqtr4g |
⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ ( 𝑦 ∈ 𝑌 ↦ 𝑍 ) = ( 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝑌 ↦ ⦋ 𝐴 / 𝑥 ⦌ 𝑍 ) ) |