| Step | Hyp | Ref | Expression | 
						
							| 1 |  | csbopab | ⊢ ⦋ 𝐴  /  𝑥 ⦌ { 〈 𝑦 ,  𝑧 〉  ∣  ( 𝑦  ∈  𝑌  ∧  𝑧  =  𝑍 ) }  =  { 〈 𝑦 ,  𝑧 〉  ∣  [ 𝐴  /  𝑥 ] ( 𝑦  ∈  𝑌  ∧  𝑧  =  𝑍 ) } | 
						
							| 2 |  | sbcan | ⊢ ( [ 𝐴  /  𝑥 ] ( 𝑦  ∈  𝑌  ∧  𝑧  =  𝑍 )  ↔  ( [ 𝐴  /  𝑥 ] 𝑦  ∈  𝑌  ∧  [ 𝐴  /  𝑥 ] 𝑧  =  𝑍 ) ) | 
						
							| 3 |  | sbcel12 | ⊢ ( [ 𝐴  /  𝑥 ] 𝑦  ∈  𝑌  ↔  ⦋ 𝐴  /  𝑥 ⦌ 𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝑌 ) | 
						
							| 4 |  | csbconstg | ⊢ ( 𝐴  ∈  𝑉  →  ⦋ 𝐴  /  𝑥 ⦌ 𝑦  =  𝑦 ) | 
						
							| 5 | 4 | eleq1d | ⊢ ( 𝐴  ∈  𝑉  →  ( ⦋ 𝐴  /  𝑥 ⦌ 𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝑌  ↔  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝑌 ) ) | 
						
							| 6 | 3 5 | bitrid | ⊢ ( 𝐴  ∈  𝑉  →  ( [ 𝐴  /  𝑥 ] 𝑦  ∈  𝑌  ↔  𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝑌 ) ) | 
						
							| 7 |  | sbceq2g | ⊢ ( 𝐴  ∈  𝑉  →  ( [ 𝐴  /  𝑥 ] 𝑧  =  𝑍  ↔  𝑧  =  ⦋ 𝐴  /  𝑥 ⦌ 𝑍 ) ) | 
						
							| 8 | 6 7 | anbi12d | ⊢ ( 𝐴  ∈  𝑉  →  ( ( [ 𝐴  /  𝑥 ] 𝑦  ∈  𝑌  ∧  [ 𝐴  /  𝑥 ] 𝑧  =  𝑍 )  ↔  ( 𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝑌  ∧  𝑧  =  ⦋ 𝐴  /  𝑥 ⦌ 𝑍 ) ) ) | 
						
							| 9 | 2 8 | bitrid | ⊢ ( 𝐴  ∈  𝑉  →  ( [ 𝐴  /  𝑥 ] ( 𝑦  ∈  𝑌  ∧  𝑧  =  𝑍 )  ↔  ( 𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝑌  ∧  𝑧  =  ⦋ 𝐴  /  𝑥 ⦌ 𝑍 ) ) ) | 
						
							| 10 | 9 | opabbidv | ⊢ ( 𝐴  ∈  𝑉  →  { 〈 𝑦 ,  𝑧 〉  ∣  [ 𝐴  /  𝑥 ] ( 𝑦  ∈  𝑌  ∧  𝑧  =  𝑍 ) }  =  { 〈 𝑦 ,  𝑧 〉  ∣  ( 𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝑌  ∧  𝑧  =  ⦋ 𝐴  /  𝑥 ⦌ 𝑍 ) } ) | 
						
							| 11 | 1 10 | eqtrid | ⊢ ( 𝐴  ∈  𝑉  →  ⦋ 𝐴  /  𝑥 ⦌ { 〈 𝑦 ,  𝑧 〉  ∣  ( 𝑦  ∈  𝑌  ∧  𝑧  =  𝑍 ) }  =  { 〈 𝑦 ,  𝑧 〉  ∣  ( 𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝑌  ∧  𝑧  =  ⦋ 𝐴  /  𝑥 ⦌ 𝑍 ) } ) | 
						
							| 12 |  | df-mpt | ⊢ ( 𝑦  ∈  𝑌  ↦  𝑍 )  =  { 〈 𝑦 ,  𝑧 〉  ∣  ( 𝑦  ∈  𝑌  ∧  𝑧  =  𝑍 ) } | 
						
							| 13 | 12 | csbeq2i | ⊢ ⦋ 𝐴  /  𝑥 ⦌ ( 𝑦  ∈  𝑌  ↦  𝑍 )  =  ⦋ 𝐴  /  𝑥 ⦌ { 〈 𝑦 ,  𝑧 〉  ∣  ( 𝑦  ∈  𝑌  ∧  𝑧  =  𝑍 ) } | 
						
							| 14 |  | df-mpt | ⊢ ( 𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝑌  ↦  ⦋ 𝐴  /  𝑥 ⦌ 𝑍 )  =  { 〈 𝑦 ,  𝑧 〉  ∣  ( 𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝑌  ∧  𝑧  =  ⦋ 𝐴  /  𝑥 ⦌ 𝑍 ) } | 
						
							| 15 | 11 13 14 | 3eqtr4g | ⊢ ( 𝐴  ∈  𝑉  →  ⦋ 𝐴  /  𝑥 ⦌ ( 𝑦  ∈  𝑌  ↦  𝑍 )  =  ( 𝑦  ∈  ⦋ 𝐴  /  𝑥 ⦌ 𝑌  ↦  ⦋ 𝐴  /  𝑥 ⦌ 𝑍 ) ) |