Metamath Proof Explorer


Theorem csbmpt2

Description: Move substitution into the second part of a maps-to notation. (Contributed by AV, 26-Sep-2019)

Ref Expression
Assertion csbmpt2 ( 𝐴𝑉 𝐴 / 𝑥 ( 𝑦𝑌𝑍 ) = ( 𝑦𝑌 𝐴 / 𝑥 𝑍 ) )

Proof

Step Hyp Ref Expression
1 csbmpt12 ( 𝐴𝑉 𝐴 / 𝑥 ( 𝑦𝑌𝑍 ) = ( 𝑦 𝐴 / 𝑥 𝑌 𝐴 / 𝑥 𝑍 ) )
2 csbconstg ( 𝐴𝑉 𝐴 / 𝑥 𝑌 = 𝑌 )
3 2 mpteq1d ( 𝐴𝑉 → ( 𝑦 𝐴 / 𝑥 𝑌 𝐴 / 𝑥 𝑍 ) = ( 𝑦𝑌 𝐴 / 𝑥 𝑍 ) )
4 1 3 eqtrd ( 𝐴𝑉 𝐴 / 𝑥 ( 𝑦𝑌𝑍 ) = ( 𝑦𝑌 𝐴 / 𝑥 𝑍 ) )