Metamath Proof Explorer


Theorem csbnest1g

Description: Nest the composition of two substitutions. (Contributed by NM, 23-May-2006) (Proof shortened by Mario Carneiro, 11-Nov-2016)

Ref Expression
Assertion csbnest1g ( 𝐴𝑉 𝐴 / 𝑥 𝐵 / 𝑥 𝐶 = 𝐴 / 𝑥 𝐵 / 𝑥 𝐶 )

Proof

Step Hyp Ref Expression
1 nfcsb1v 𝑥 𝑦 / 𝑥 𝐶
2 1 ax-gen 𝑦 𝑥 𝑦 / 𝑥 𝐶
3 csbnestgfw ( ( 𝐴𝑉 ∧ ∀ 𝑦 𝑥 𝑦 / 𝑥 𝐶 ) → 𝐴 / 𝑥 𝐵 / 𝑦 𝑦 / 𝑥 𝐶 = 𝐴 / 𝑥 𝐵 / 𝑦 𝑦 / 𝑥 𝐶 )
4 2 3 mpan2 ( 𝐴𝑉 𝐴 / 𝑥 𝐵 / 𝑦 𝑦 / 𝑥 𝐶 = 𝐴 / 𝑥 𝐵 / 𝑦 𝑦 / 𝑥 𝐶 )
5 csbcow 𝐵 / 𝑦 𝑦 / 𝑥 𝐶 = 𝐵 / 𝑥 𝐶
6 5 csbeq2i 𝐴 / 𝑥 𝐵 / 𝑦 𝑦 / 𝑥 𝐶 = 𝐴 / 𝑥 𝐵 / 𝑥 𝐶
7 csbcow 𝐴 / 𝑥 𝐵 / 𝑦 𝑦 / 𝑥 𝐶 = 𝐴 / 𝑥 𝐵 / 𝑥 𝐶
8 4 6 7 3eqtr3g ( 𝐴𝑉 𝐴 / 𝑥 𝐵 / 𝑥 𝐶 = 𝐴 / 𝑥 𝐵 / 𝑥 𝐶 )