Step |
Hyp |
Ref |
Expression |
1 |
|
elex |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ V ) |
2 |
|
df-csb |
⊢ ⦋ 𝐵 / 𝑦 ⦌ 𝐶 = { 𝑧 ∣ [ 𝐵 / 𝑦 ] 𝑧 ∈ 𝐶 } |
3 |
2
|
abeq2i |
⊢ ( 𝑧 ∈ ⦋ 𝐵 / 𝑦 ⦌ 𝐶 ↔ [ 𝐵 / 𝑦 ] 𝑧 ∈ 𝐶 ) |
4 |
3
|
sbcbii |
⊢ ( [ 𝐴 / 𝑥 ] 𝑧 ∈ ⦋ 𝐵 / 𝑦 ⦌ 𝐶 ↔ [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝑧 ∈ 𝐶 ) |
5 |
|
nfcr |
⊢ ( Ⅎ 𝑥 𝐶 → Ⅎ 𝑥 𝑧 ∈ 𝐶 ) |
6 |
5
|
alimi |
⊢ ( ∀ 𝑦 Ⅎ 𝑥 𝐶 → ∀ 𝑦 Ⅎ 𝑥 𝑧 ∈ 𝐶 ) |
7 |
|
sbcnestgf |
⊢ ( ( 𝐴 ∈ V ∧ ∀ 𝑦 Ⅎ 𝑥 𝑧 ∈ 𝐶 ) → ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝑧 ∈ 𝐶 ↔ [ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 / 𝑦 ] 𝑧 ∈ 𝐶 ) ) |
8 |
6 7
|
sylan2 |
⊢ ( ( 𝐴 ∈ V ∧ ∀ 𝑦 Ⅎ 𝑥 𝐶 ) → ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝑧 ∈ 𝐶 ↔ [ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 / 𝑦 ] 𝑧 ∈ 𝐶 ) ) |
9 |
4 8
|
syl5bb |
⊢ ( ( 𝐴 ∈ V ∧ ∀ 𝑦 Ⅎ 𝑥 𝐶 ) → ( [ 𝐴 / 𝑥 ] 𝑧 ∈ ⦋ 𝐵 / 𝑦 ⦌ 𝐶 ↔ [ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 / 𝑦 ] 𝑧 ∈ 𝐶 ) ) |
10 |
9
|
abbidv |
⊢ ( ( 𝐴 ∈ V ∧ ∀ 𝑦 Ⅎ 𝑥 𝐶 ) → { 𝑧 ∣ [ 𝐴 / 𝑥 ] 𝑧 ∈ ⦋ 𝐵 / 𝑦 ⦌ 𝐶 } = { 𝑧 ∣ [ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 / 𝑦 ] 𝑧 ∈ 𝐶 } ) |
11 |
1 10
|
sylan |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑦 Ⅎ 𝑥 𝐶 ) → { 𝑧 ∣ [ 𝐴 / 𝑥 ] 𝑧 ∈ ⦋ 𝐵 / 𝑦 ⦌ 𝐶 } = { 𝑧 ∣ [ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 / 𝑦 ] 𝑧 ∈ 𝐶 } ) |
12 |
|
df-csb |
⊢ ⦋ 𝐴 / 𝑥 ⦌ ⦋ 𝐵 / 𝑦 ⦌ 𝐶 = { 𝑧 ∣ [ 𝐴 / 𝑥 ] 𝑧 ∈ ⦋ 𝐵 / 𝑦 ⦌ 𝐶 } |
13 |
|
df-csb |
⊢ ⦋ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 / 𝑦 ⦌ 𝐶 = { 𝑧 ∣ [ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 / 𝑦 ] 𝑧 ∈ 𝐶 } |
14 |
11 12 13
|
3eqtr4g |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑦 Ⅎ 𝑥 𝐶 ) → ⦋ 𝐴 / 𝑥 ⦌ ⦋ 𝐵 / 𝑦 ⦌ 𝐶 = ⦋ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 / 𝑦 ⦌ 𝐶 ) |