Metamath Proof Explorer


Theorem csbnestgw

Description: Nest the composition of two substitutions. Version of csbnestg with a disjoint variable condition, which does not require ax-13 . (Contributed by NM, 23-Nov-2005) (Revised by Gino Giotto, 26-Jan-2024)

Ref Expression
Assertion csbnestgw ( 𝐴𝑉 𝐴 / 𝑥 𝐵 / 𝑦 𝐶 = 𝐴 / 𝑥 𝐵 / 𝑦 𝐶 )

Proof

Step Hyp Ref Expression
1 nfcv 𝑥 𝐶
2 1 ax-gen 𝑦 𝑥 𝐶
3 csbnestgfw ( ( 𝐴𝑉 ∧ ∀ 𝑦 𝑥 𝐶 ) → 𝐴 / 𝑥 𝐵 / 𝑦 𝐶 = 𝐴 / 𝑥 𝐵 / 𝑦 𝐶 )
4 2 3 mpan2 ( 𝐴𝑉 𝐴 / 𝑥 𝐵 / 𝑦 𝐶 = 𝐴 / 𝑥 𝐵 / 𝑦 𝐶 )