Metamath Proof Explorer


Theorem csbopg

Description: Distribution of class substitution over ordered pairs. (Contributed by Drahflow, 25-Sep-2015) (Revised by Mario Carneiro, 29-Oct-2015) (Revised by ML, 25-Oct-2020)

Ref Expression
Assertion csbopg ( 𝐴𝑉 𝐴 / 𝑥 𝐶 , 𝐷 ⟩ = ⟨ 𝐴 / 𝑥 𝐶 , 𝐴 / 𝑥 𝐷 ⟩ )

Proof

Step Hyp Ref Expression
1 csbif 𝐴 / 𝑥 if ( ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) , { { 𝐶 } , { 𝐶 , 𝐷 } } , ∅ ) = if ( [ 𝐴 / 𝑥 ] ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) , 𝐴 / 𝑥 { { 𝐶 } , { 𝐶 , 𝐷 } } , 𝐴 / 𝑥 ∅ )
2 sbcan ( [ 𝐴 / 𝑥 ] ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ↔ ( [ 𝐴 / 𝑥 ] 𝐶 ∈ V ∧ [ 𝐴 / 𝑥 ] 𝐷 ∈ V ) )
3 sbcel1g ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ] 𝐶 ∈ V ↔ 𝐴 / 𝑥 𝐶 ∈ V ) )
4 sbcel1g ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ] 𝐷 ∈ V ↔ 𝐴 / 𝑥 𝐷 ∈ V ) )
5 3 4 anbi12d ( 𝐴𝑉 → ( ( [ 𝐴 / 𝑥 ] 𝐶 ∈ V ∧ [ 𝐴 / 𝑥 ] 𝐷 ∈ V ) ↔ ( 𝐴 / 𝑥 𝐶 ∈ V ∧ 𝐴 / 𝑥 𝐷 ∈ V ) ) )
6 2 5 syl5bb ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ] ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) ↔ ( 𝐴 / 𝑥 𝐶 ∈ V ∧ 𝐴 / 𝑥 𝐷 ∈ V ) ) )
7 csbprg ( 𝐴𝑉 𝐴 / 𝑥 { { 𝐶 } , { 𝐶 , 𝐷 } } = { 𝐴 / 𝑥 { 𝐶 } , 𝐴 / 𝑥 { 𝐶 , 𝐷 } } )
8 csbsng ( 𝐴𝑉 𝐴 / 𝑥 { 𝐶 } = { 𝐴 / 𝑥 𝐶 } )
9 csbprg ( 𝐴𝑉 𝐴 / 𝑥 { 𝐶 , 𝐷 } = { 𝐴 / 𝑥 𝐶 , 𝐴 / 𝑥 𝐷 } )
10 8 9 preq12d ( 𝐴𝑉 → { 𝐴 / 𝑥 { 𝐶 } , 𝐴 / 𝑥 { 𝐶 , 𝐷 } } = { { 𝐴 / 𝑥 𝐶 } , { 𝐴 / 𝑥 𝐶 , 𝐴 / 𝑥 𝐷 } } )
11 7 10 eqtrd ( 𝐴𝑉 𝐴 / 𝑥 { { 𝐶 } , { 𝐶 , 𝐷 } } = { { 𝐴 / 𝑥 𝐶 } , { 𝐴 / 𝑥 𝐶 , 𝐴 / 𝑥 𝐷 } } )
12 csbconstg ( 𝐴𝑉 𝐴 / 𝑥 ∅ = ∅ )
13 6 11 12 ifbieq12d ( 𝐴𝑉 → if ( [ 𝐴 / 𝑥 ] ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) , 𝐴 / 𝑥 { { 𝐶 } , { 𝐶 , 𝐷 } } , 𝐴 / 𝑥 ∅ ) = if ( ( 𝐴 / 𝑥 𝐶 ∈ V ∧ 𝐴 / 𝑥 𝐷 ∈ V ) , { { 𝐴 / 𝑥 𝐶 } , { 𝐴 / 𝑥 𝐶 , 𝐴 / 𝑥 𝐷 } } , ∅ ) )
14 1 13 eqtrid ( 𝐴𝑉 𝐴 / 𝑥 if ( ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) , { { 𝐶 } , { 𝐶 , 𝐷 } } , ∅ ) = if ( ( 𝐴 / 𝑥 𝐶 ∈ V ∧ 𝐴 / 𝑥 𝐷 ∈ V ) , { { 𝐴 / 𝑥 𝐶 } , { 𝐴 / 𝑥 𝐶 , 𝐴 / 𝑥 𝐷 } } , ∅ ) )
15 dfopif 𝐶 , 𝐷 ⟩ = if ( ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) , { { 𝐶 } , { 𝐶 , 𝐷 } } , ∅ )
16 15 csbeq2i 𝐴 / 𝑥 𝐶 , 𝐷 ⟩ = 𝐴 / 𝑥 if ( ( 𝐶 ∈ V ∧ 𝐷 ∈ V ) , { { 𝐶 } , { 𝐶 , 𝐷 } } , ∅ )
17 dfopif 𝐴 / 𝑥 𝐶 , 𝐴 / 𝑥 𝐷 ⟩ = if ( ( 𝐴 / 𝑥 𝐶 ∈ V ∧ 𝐴 / 𝑥 𝐷 ∈ V ) , { { 𝐴 / 𝑥 𝐶 } , { 𝐴 / 𝑥 𝐶 , 𝐴 / 𝑥 𝐷 } } , ∅ )
18 14 16 17 3eqtr4g ( 𝐴𝑉 𝐴 / 𝑥 𝐶 , 𝐷 ⟩ = ⟨ 𝐴 / 𝑥 𝐶 , 𝐴 / 𝑥 𝐷 ⟩ )