| Step | Hyp | Ref | Expression | 
						
							| 1 |  | csbov123 | ⊢ ⦋ 𝐴  /  𝑥 ⦌ ( 𝐵 𝐹 𝐶 )  =  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ⦋ 𝐴  /  𝑥 ⦌ 𝐹 ⦋ 𝐴  /  𝑥 ⦌ 𝐶 ) | 
						
							| 2 |  | csbconstg | ⊢ ( 𝐴  ∈  V  →  ⦋ 𝐴  /  𝑥 ⦌ 𝐵  =  𝐵 ) | 
						
							| 3 |  | csbconstg | ⊢ ( 𝐴  ∈  V  →  ⦋ 𝐴  /  𝑥 ⦌ 𝐶  =  𝐶 ) | 
						
							| 4 | 2 3 | oveq12d | ⊢ ( 𝐴  ∈  V  →  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ⦋ 𝐴  /  𝑥 ⦌ 𝐹 ⦋ 𝐴  /  𝑥 ⦌ 𝐶 )  =  ( 𝐵 ⦋ 𝐴  /  𝑥 ⦌ 𝐹 𝐶 ) ) | 
						
							| 5 |  | 0fv | ⊢ ( ∅ ‘ 〈 𝐵 ,  𝐶 〉 )  =  ∅ | 
						
							| 6 |  | df-ov | ⊢ ( 𝐵 ∅ 𝐶 )  =  ( ∅ ‘ 〈 𝐵 ,  𝐶 〉 ) | 
						
							| 7 |  | 0ov | ⊢ ( ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ∅ ⦋ 𝐴  /  𝑥 ⦌ 𝐶 )  =  ∅ | 
						
							| 8 | 5 6 7 | 3eqtr4ri | ⊢ ( ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ∅ ⦋ 𝐴  /  𝑥 ⦌ 𝐶 )  =  ( 𝐵 ∅ 𝐶 ) | 
						
							| 9 |  | csbprc | ⊢ ( ¬  𝐴  ∈  V  →  ⦋ 𝐴  /  𝑥 ⦌ 𝐹  =  ∅ ) | 
						
							| 10 | 9 | oveqd | ⊢ ( ¬  𝐴  ∈  V  →  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ⦋ 𝐴  /  𝑥 ⦌ 𝐹 ⦋ 𝐴  /  𝑥 ⦌ 𝐶 )  =  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ∅ ⦋ 𝐴  /  𝑥 ⦌ 𝐶 ) ) | 
						
							| 11 | 9 | oveqd | ⊢ ( ¬  𝐴  ∈  V  →  ( 𝐵 ⦋ 𝐴  /  𝑥 ⦌ 𝐹 𝐶 )  =  ( 𝐵 ∅ 𝐶 ) ) | 
						
							| 12 | 8 10 11 | 3eqtr4a | ⊢ ( ¬  𝐴  ∈  V  →  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ⦋ 𝐴  /  𝑥 ⦌ 𝐹 ⦋ 𝐴  /  𝑥 ⦌ 𝐶 )  =  ( 𝐵 ⦋ 𝐴  /  𝑥 ⦌ 𝐹 𝐶 ) ) | 
						
							| 13 | 4 12 | pm2.61i | ⊢ ( ⦋ 𝐴  /  𝑥 ⦌ 𝐵 ⦋ 𝐴  /  𝑥 ⦌ 𝐹 ⦋ 𝐴  /  𝑥 ⦌ 𝐶 )  =  ( 𝐵 ⦋ 𝐴  /  𝑥 ⦌ 𝐹 𝐶 ) | 
						
							| 14 | 1 13 | eqtri | ⊢ ⦋ 𝐴  /  𝑥 ⦌ ( 𝐵 𝐹 𝐶 )  =  ( 𝐵 ⦋ 𝐴  /  𝑥 ⦌ 𝐹 𝐶 ) |