Metamath Proof Explorer


Theorem csbov123

Description: Move class substitution in and out of an operation. (Contributed by NM, 12-Nov-2005) (Revised by NM, 23-Aug-2018)

Ref Expression
Assertion csbov123 𝐴 / 𝑥 ( 𝐵 𝐹 𝐶 ) = ( 𝐴 / 𝑥 𝐵 𝐴 / 𝑥 𝐹 𝐴 / 𝑥 𝐶 )

Proof

Step Hyp Ref Expression
1 csbeq1 ( 𝑦 = 𝐴 𝑦 / 𝑥 ( 𝐵 𝐹 𝐶 ) = 𝐴 / 𝑥 ( 𝐵 𝐹 𝐶 ) )
2 csbeq1 ( 𝑦 = 𝐴 𝑦 / 𝑥 𝐹 = 𝐴 / 𝑥 𝐹 )
3 csbeq1 ( 𝑦 = 𝐴 𝑦 / 𝑥 𝐵 = 𝐴 / 𝑥 𝐵 )
4 csbeq1 ( 𝑦 = 𝐴 𝑦 / 𝑥 𝐶 = 𝐴 / 𝑥 𝐶 )
5 2 3 4 oveq123d ( 𝑦 = 𝐴 → ( 𝑦 / 𝑥 𝐵 𝑦 / 𝑥 𝐹 𝑦 / 𝑥 𝐶 ) = ( 𝐴 / 𝑥 𝐵 𝐴 / 𝑥 𝐹 𝐴 / 𝑥 𝐶 ) )
6 1 5 eqeq12d ( 𝑦 = 𝐴 → ( 𝑦 / 𝑥 ( 𝐵 𝐹 𝐶 ) = ( 𝑦 / 𝑥 𝐵 𝑦 / 𝑥 𝐹 𝑦 / 𝑥 𝐶 ) ↔ 𝐴 / 𝑥 ( 𝐵 𝐹 𝐶 ) = ( 𝐴 / 𝑥 𝐵 𝐴 / 𝑥 𝐹 𝐴 / 𝑥 𝐶 ) ) )
7 vex 𝑦 ∈ V
8 nfcsb1v 𝑥 𝑦 / 𝑥 𝐵
9 nfcsb1v 𝑥 𝑦 / 𝑥 𝐹
10 nfcsb1v 𝑥 𝑦 / 𝑥 𝐶
11 8 9 10 nfov 𝑥 ( 𝑦 / 𝑥 𝐵 𝑦 / 𝑥 𝐹 𝑦 / 𝑥 𝐶 )
12 csbeq1a ( 𝑥 = 𝑦𝐹 = 𝑦 / 𝑥 𝐹 )
13 csbeq1a ( 𝑥 = 𝑦𝐵 = 𝑦 / 𝑥 𝐵 )
14 csbeq1a ( 𝑥 = 𝑦𝐶 = 𝑦 / 𝑥 𝐶 )
15 12 13 14 oveq123d ( 𝑥 = 𝑦 → ( 𝐵 𝐹 𝐶 ) = ( 𝑦 / 𝑥 𝐵 𝑦 / 𝑥 𝐹 𝑦 / 𝑥 𝐶 ) )
16 7 11 15 csbief 𝑦 / 𝑥 ( 𝐵 𝐹 𝐶 ) = ( 𝑦 / 𝑥 𝐵 𝑦 / 𝑥 𝐹 𝑦 / 𝑥 𝐶 )
17 6 16 vtoclg ( 𝐴 ∈ V → 𝐴 / 𝑥 ( 𝐵 𝐹 𝐶 ) = ( 𝐴 / 𝑥 𝐵 𝐴 / 𝑥 𝐹 𝐴 / 𝑥 𝐶 ) )
18 csbprc ( ¬ 𝐴 ∈ V → 𝐴 / 𝑥 ( 𝐵 𝐹 𝐶 ) = ∅ )
19 df-ov ( 𝐴 / 𝑥 𝐵 𝐴 / 𝑥 𝐹 𝐴 / 𝑥 𝐶 ) = ( 𝐴 / 𝑥 𝐹 ‘ ⟨ 𝐴 / 𝑥 𝐵 , 𝐴 / 𝑥 𝐶 ⟩ )
20 csbprc ( ¬ 𝐴 ∈ V → 𝐴 / 𝑥 𝐹 = ∅ )
21 20 fveq1d ( ¬ 𝐴 ∈ V → ( 𝐴 / 𝑥 𝐹 ‘ ⟨ 𝐴 / 𝑥 𝐵 , 𝐴 / 𝑥 𝐶 ⟩ ) = ( ∅ ‘ ⟨ 𝐴 / 𝑥 𝐵 , 𝐴 / 𝑥 𝐶 ⟩ ) )
22 0fv ( ∅ ‘ ⟨ 𝐴 / 𝑥 𝐵 , 𝐴 / 𝑥 𝐶 ⟩ ) = ∅
23 21 22 eqtrdi ( ¬ 𝐴 ∈ V → ( 𝐴 / 𝑥 𝐹 ‘ ⟨ 𝐴 / 𝑥 𝐵 , 𝐴 / 𝑥 𝐶 ⟩ ) = ∅ )
24 19 23 eqtr2id ( ¬ 𝐴 ∈ V → ∅ = ( 𝐴 / 𝑥 𝐵 𝐴 / 𝑥 𝐹 𝐴 / 𝑥 𝐶 ) )
25 18 24 eqtrd ( ¬ 𝐴 ∈ V → 𝐴 / 𝑥 ( 𝐵 𝐹 𝐶 ) = ( 𝐴 / 𝑥 𝐵 𝐴 / 𝑥 𝐹 𝐴 / 𝑥 𝐶 ) )
26 17 25 pm2.61i 𝐴 / 𝑥 ( 𝐵 𝐹 𝐶 ) = ( 𝐴 / 𝑥 𝐵 𝐴 / 𝑥 𝐹 𝐴 / 𝑥 𝐶 )