Description: Move class substitution in and out of an operation. (Contributed by NM, 12-Nov-2005)
Ref | Expression | ||
---|---|---|---|
Assertion | csbov2g | ⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ ( 𝐵 𝐹 𝐶 ) = ( 𝐵 𝐹 ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csbov12g | ⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ ( 𝐵 𝐹 𝐶 ) = ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 𝐹 ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) | |
2 | csbconstg | ⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = 𝐵 ) | |
3 | 2 | oveq1d | ⊢ ( 𝐴 ∈ 𝑉 → ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 𝐹 ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) = ( 𝐵 𝐹 ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) |
4 | 1 3 | eqtrd | ⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ ( 𝐵 𝐹 𝐶 ) = ( 𝐵 𝐹 ⦋ 𝐴 / 𝑥 ⦌ 𝐶 ) ) |