Metamath Proof Explorer


Theorem csbprg

Description: Distribute proper substitution through a pair of classes. (Contributed by Alexander van der Vekens, 4-Sep-2018)

Ref Expression
Assertion csbprg ( 𝐶𝑉 𝐶 / 𝑥 { 𝐴 , 𝐵 } = { 𝐶 / 𝑥 𝐴 , 𝐶 / 𝑥 𝐵 } )

Proof

Step Hyp Ref Expression
1 csbun 𝐶 / 𝑥 ( { 𝐴 } ∪ { 𝐵 } ) = ( 𝐶 / 𝑥 { 𝐴 } ∪ 𝐶 / 𝑥 { 𝐵 } )
2 csbsng ( 𝐶𝑉 𝐶 / 𝑥 { 𝐴 } = { 𝐶 / 𝑥 𝐴 } )
3 csbsng ( 𝐶𝑉 𝐶 / 𝑥 { 𝐵 } = { 𝐶 / 𝑥 𝐵 } )
4 2 3 uneq12d ( 𝐶𝑉 → ( 𝐶 / 𝑥 { 𝐴 } ∪ 𝐶 / 𝑥 { 𝐵 } ) = ( { 𝐶 / 𝑥 𝐴 } ∪ { 𝐶 / 𝑥 𝐵 } ) )
5 1 4 eqtrid ( 𝐶𝑉 𝐶 / 𝑥 ( { 𝐴 } ∪ { 𝐵 } ) = ( { 𝐶 / 𝑥 𝐴 } ∪ { 𝐶 / 𝑥 𝐵 } ) )
6 df-pr { 𝐴 , 𝐵 } = ( { 𝐴 } ∪ { 𝐵 } )
7 6 csbeq2i 𝐶 / 𝑥 { 𝐴 , 𝐵 } = 𝐶 / 𝑥 ( { 𝐴 } ∪ { 𝐵 } )
8 df-pr { 𝐶 / 𝑥 𝐴 , 𝐶 / 𝑥 𝐵 } = ( { 𝐶 / 𝑥 𝐴 } ∪ { 𝐶 / 𝑥 𝐵 } )
9 5 7 8 3eqtr4g ( 𝐶𝑉 𝐶 / 𝑥 { 𝐴 , 𝐵 } = { 𝐶 / 𝑥 𝐴 , 𝐶 / 𝑥 𝐵 } )