| Step |
Hyp |
Ref |
Expression |
| 1 |
|
csbima12 |
⊢ ⦋ 𝐴 / 𝑥 ⦌ ( 𝐵 “ V ) = ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 “ ⦋ 𝐴 / 𝑥 ⦌ V ) |
| 2 |
|
csbconstg |
⊢ ( 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ V = V ) |
| 3 |
2
|
imaeq2d |
⊢ ( 𝐴 ∈ V → ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 “ ⦋ 𝐴 / 𝑥 ⦌ V ) = ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 “ V ) ) |
| 4 |
|
0ima |
⊢ ( ∅ “ V ) = ∅ |
| 5 |
4
|
eqcomi |
⊢ ∅ = ( ∅ “ V ) |
| 6 |
|
csbprc |
⊢ ( ¬ 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = ∅ ) |
| 7 |
6
|
imaeq1d |
⊢ ( ¬ 𝐴 ∈ V → ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 “ ⦋ 𝐴 / 𝑥 ⦌ V ) = ( ∅ “ ⦋ 𝐴 / 𝑥 ⦌ V ) ) |
| 8 |
|
0ima |
⊢ ( ∅ “ ⦋ 𝐴 / 𝑥 ⦌ V ) = ∅ |
| 9 |
7 8
|
eqtrdi |
⊢ ( ¬ 𝐴 ∈ V → ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 “ ⦋ 𝐴 / 𝑥 ⦌ V ) = ∅ ) |
| 10 |
6
|
imaeq1d |
⊢ ( ¬ 𝐴 ∈ V → ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 “ V ) = ( ∅ “ V ) ) |
| 11 |
5 9 10
|
3eqtr4a |
⊢ ( ¬ 𝐴 ∈ V → ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 “ ⦋ 𝐴 / 𝑥 ⦌ V ) = ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 “ V ) ) |
| 12 |
3 11
|
pm2.61i |
⊢ ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 “ ⦋ 𝐴 / 𝑥 ⦌ V ) = ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 “ V ) |
| 13 |
1 12
|
eqtri |
⊢ ⦋ 𝐴 / 𝑥 ⦌ ( 𝐵 “ V ) = ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 “ V ) |
| 14 |
|
dfrn4 |
⊢ ran 𝐵 = ( 𝐵 “ V ) |
| 15 |
14
|
csbeq2i |
⊢ ⦋ 𝐴 / 𝑥 ⦌ ran 𝐵 = ⦋ 𝐴 / 𝑥 ⦌ ( 𝐵 “ V ) |
| 16 |
|
dfrn4 |
⊢ ran ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = ( ⦋ 𝐴 / 𝑥 ⦌ 𝐵 “ V ) |
| 17 |
13 15 16
|
3eqtr4i |
⊢ ⦋ 𝐴 / 𝑥 ⦌ ran 𝐵 = ran ⦋ 𝐴 / 𝑥 ⦌ 𝐵 |