| Step |
Hyp |
Ref |
Expression |
| 1 |
|
csbab |
⊢ ⦋ 𝐴 / 𝑥 ⦌ { 𝑦 ∣ 𝑦 = 𝐵 } = { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 = 𝐵 } |
| 2 |
|
sbceq2g |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] 𝑦 = 𝐵 ↔ 𝑦 = ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) ) |
| 3 |
2
|
abbidv |
⊢ ( 𝐴 ∈ 𝑉 → { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 = 𝐵 } = { 𝑦 ∣ 𝑦 = ⦋ 𝐴 / 𝑥 ⦌ 𝐵 } ) |
| 4 |
1 3
|
eqtrid |
⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ { 𝑦 ∣ 𝑦 = 𝐵 } = { 𝑦 ∣ 𝑦 = ⦋ 𝐴 / 𝑥 ⦌ 𝐵 } ) |
| 5 |
|
df-sn |
⊢ { 𝐵 } = { 𝑦 ∣ 𝑦 = 𝐵 } |
| 6 |
5
|
csbeq2i |
⊢ ⦋ 𝐴 / 𝑥 ⦌ { 𝐵 } = ⦋ 𝐴 / 𝑥 ⦌ { 𝑦 ∣ 𝑦 = 𝐵 } |
| 7 |
|
df-sn |
⊢ { ⦋ 𝐴 / 𝑥 ⦌ 𝐵 } = { 𝑦 ∣ 𝑦 = ⦋ 𝐴 / 𝑥 ⦌ 𝐵 } |
| 8 |
4 6 7
|
3eqtr4g |
⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ { 𝐵 } = { ⦋ 𝐴 / 𝑥 ⦌ 𝐵 } ) |