Metamath Proof Explorer


Theorem csbsng

Description: Distribute proper substitution through the singleton of a class. csbsng is derived from the virtual deduction proof csbsngVD . (Contributed by Alan Sare, 10-Nov-2012)

Ref Expression
Assertion csbsng ( 𝐴𝑉 𝐴 / 𝑥 { 𝐵 } = { 𝐴 / 𝑥 𝐵 } )

Proof

Step Hyp Ref Expression
1 csbab 𝐴 / 𝑥 { 𝑦𝑦 = 𝐵 } = { 𝑦[ 𝐴 / 𝑥 ] 𝑦 = 𝐵 }
2 sbceq2g ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ] 𝑦 = 𝐵𝑦 = 𝐴 / 𝑥 𝐵 ) )
3 2 abbidv ( 𝐴𝑉 → { 𝑦[ 𝐴 / 𝑥 ] 𝑦 = 𝐵 } = { 𝑦𝑦 = 𝐴 / 𝑥 𝐵 } )
4 1 3 eqtrid ( 𝐴𝑉 𝐴 / 𝑥 { 𝑦𝑦 = 𝐵 } = { 𝑦𝑦 = 𝐴 / 𝑥 𝐵 } )
5 df-sn { 𝐵 } = { 𝑦𝑦 = 𝐵 }
6 5 csbeq2i 𝐴 / 𝑥 { 𝐵 } = 𝐴 / 𝑥 { 𝑦𝑦 = 𝐵 }
7 df-sn { 𝐴 / 𝑥 𝐵 } = { 𝑦𝑦 = 𝐴 / 𝑥 𝐵 }
8 4 6 7 3eqtr4g ( 𝐴𝑉 𝐴 / 𝑥 { 𝐵 } = { 𝐴 / 𝑥 𝐵 } )