Step |
Hyp |
Ref |
Expression |
1 |
|
csbab |
⊢ ⦋ 𝐴 / 𝑥 ⦌ { 𝑦 ∣ 𝑦 = 𝐵 } = { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 = 𝐵 } |
2 |
|
sbceq2g |
⊢ ( 𝐴 ∈ 𝑉 → ( [ 𝐴 / 𝑥 ] 𝑦 = 𝐵 ↔ 𝑦 = ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) ) |
3 |
2
|
abbidv |
⊢ ( 𝐴 ∈ 𝑉 → { 𝑦 ∣ [ 𝐴 / 𝑥 ] 𝑦 = 𝐵 } = { 𝑦 ∣ 𝑦 = ⦋ 𝐴 / 𝑥 ⦌ 𝐵 } ) |
4 |
1 3
|
eqtrid |
⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ { 𝑦 ∣ 𝑦 = 𝐵 } = { 𝑦 ∣ 𝑦 = ⦋ 𝐴 / 𝑥 ⦌ 𝐵 } ) |
5 |
|
df-sn |
⊢ { 𝐵 } = { 𝑦 ∣ 𝑦 = 𝐵 } |
6 |
5
|
csbeq2i |
⊢ ⦋ 𝐴 / 𝑥 ⦌ { 𝐵 } = ⦋ 𝐴 / 𝑥 ⦌ { 𝑦 ∣ 𝑦 = 𝐵 } |
7 |
|
df-sn |
⊢ { ⦋ 𝐴 / 𝑥 ⦌ 𝐵 } = { 𝑦 ∣ 𝑦 = ⦋ 𝐴 / 𝑥 ⦌ 𝐵 } |
8 |
4 6 7
|
3eqtr4g |
⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ { 𝐵 } = { ⦋ 𝐴 / 𝑥 ⦌ 𝐵 } ) |