Step |
Hyp |
Ref |
Expression |
1 |
|
csbab |
⊢ ⦋ 𝐴 / 𝑥 ⦌ { 𝑧 ∣ ∃ 𝑦 ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) } = { 𝑧 ∣ [ 𝐴 / 𝑥 ] ∃ 𝑦 ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) } |
2 |
|
sbcex2 |
⊢ ( [ 𝐴 / 𝑥 ] ∃ 𝑦 ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) ↔ ∃ 𝑦 [ 𝐴 / 𝑥 ] ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) ) |
3 |
|
sbcan |
⊢ ( [ 𝐴 / 𝑥 ] ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) ↔ ( [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝑦 ∧ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 ) ) |
4 |
|
sbcg |
⊢ ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝑦 ) ) |
5 |
4
|
anbi1d |
⊢ ( 𝐴 ∈ V → ( ( [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝑦 ∧ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 ) ↔ ( 𝑧 ∈ 𝑦 ∧ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 ) ) ) |
6 |
|
sbcel2 |
⊢ ( [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 ↔ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) |
7 |
6
|
anbi2i |
⊢ ( ( 𝑧 ∈ 𝑦 ∧ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 ) ↔ ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) ) |
8 |
5 7
|
bitrdi |
⊢ ( 𝐴 ∈ V → ( ( [ 𝐴 / 𝑥 ] 𝑧 ∈ 𝑦 ∧ [ 𝐴 / 𝑥 ] 𝑦 ∈ 𝐵 ) ↔ ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) ) ) |
9 |
3 8
|
syl5bb |
⊢ ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) ↔ ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) ) ) |
10 |
9
|
exbidv |
⊢ ( 𝐴 ∈ V → ( ∃ 𝑦 [ 𝐴 / 𝑥 ] ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) ↔ ∃ 𝑦 ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) ) ) |
11 |
2 10
|
syl5bb |
⊢ ( 𝐴 ∈ V → ( [ 𝐴 / 𝑥 ] ∃ 𝑦 ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) ↔ ∃ 𝑦 ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) ) ) |
12 |
11
|
abbidv |
⊢ ( 𝐴 ∈ V → { 𝑧 ∣ [ 𝐴 / 𝑥 ] ∃ 𝑦 ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) } = { 𝑧 ∣ ∃ 𝑦 ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) } ) |
13 |
1 12
|
eqtrid |
⊢ ( 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ { 𝑧 ∣ ∃ 𝑦 ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) } = { 𝑧 ∣ ∃ 𝑦 ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) } ) |
14 |
|
df-uni |
⊢ ∪ 𝐵 = { 𝑧 ∣ ∃ 𝑦 ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) } |
15 |
14
|
csbeq2i |
⊢ ⦋ 𝐴 / 𝑥 ⦌ ∪ 𝐵 = ⦋ 𝐴 / 𝑥 ⦌ { 𝑧 ∣ ∃ 𝑦 ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ 𝐵 ) } |
16 |
|
df-uni |
⊢ ∪ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = { 𝑧 ∣ ∃ 𝑦 ( 𝑧 ∈ 𝑦 ∧ 𝑦 ∈ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) } |
17 |
13 15 16
|
3eqtr4g |
⊢ ( 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ ∪ 𝐵 = ∪ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) |
18 |
|
csbprc |
⊢ ( ¬ 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ ∪ 𝐵 = ∅ ) |
19 |
|
csbprc |
⊢ ( ¬ 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = ∅ ) |
20 |
19
|
unieqd |
⊢ ( ¬ 𝐴 ∈ V → ∪ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 = ∪ ∅ ) |
21 |
|
uni0 |
⊢ ∪ ∅ = ∅ |
22 |
20 21
|
eqtr2di |
⊢ ( ¬ 𝐴 ∈ V → ∅ = ∪ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) |
23 |
18 22
|
eqtrd |
⊢ ( ¬ 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ ∪ 𝐵 = ∪ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 ) |
24 |
17 23
|
pm2.61i |
⊢ ⦋ 𝐴 / 𝑥 ⦌ ∪ 𝐵 = ∪ ⦋ 𝐴 / 𝑥 ⦌ 𝐵 |