Step |
Hyp |
Ref |
Expression |
1 |
|
elex |
⊢ ( 𝐴 ∈ 𝑉 → 𝐴 ∈ V ) |
2 |
|
df-csb |
⊢ ⦋ 𝑦 / 𝑥 ⦌ 𝑥 = { 𝑧 ∣ [ 𝑦 / 𝑥 ] 𝑧 ∈ 𝑥 } |
3 |
|
sbcel2gv |
⊢ ( 𝑦 ∈ V → ( [ 𝑦 / 𝑥 ] 𝑧 ∈ 𝑥 ↔ 𝑧 ∈ 𝑦 ) ) |
4 |
3
|
abbi1dv |
⊢ ( 𝑦 ∈ V → { 𝑧 ∣ [ 𝑦 / 𝑥 ] 𝑧 ∈ 𝑥 } = 𝑦 ) |
5 |
2 4
|
eqtrid |
⊢ ( 𝑦 ∈ V → ⦋ 𝑦 / 𝑥 ⦌ 𝑥 = 𝑦 ) |
6 |
5
|
elv |
⊢ ⦋ 𝑦 / 𝑥 ⦌ 𝑥 = 𝑦 |
7 |
6
|
csbeq2i |
⊢ ⦋ 𝐴 / 𝑦 ⦌ ⦋ 𝑦 / 𝑥 ⦌ 𝑥 = ⦋ 𝐴 / 𝑦 ⦌ 𝑦 |
8 |
|
csbcow |
⊢ ⦋ 𝐴 / 𝑦 ⦌ ⦋ 𝑦 / 𝑥 ⦌ 𝑥 = ⦋ 𝐴 / 𝑥 ⦌ 𝑥 |
9 |
|
df-csb |
⊢ ⦋ 𝐴 / 𝑦 ⦌ 𝑦 = { 𝑧 ∣ [ 𝐴 / 𝑦 ] 𝑧 ∈ 𝑦 } |
10 |
7 8 9
|
3eqtr3i |
⊢ ⦋ 𝐴 / 𝑥 ⦌ 𝑥 = { 𝑧 ∣ [ 𝐴 / 𝑦 ] 𝑧 ∈ 𝑦 } |
11 |
|
sbcel2gv |
⊢ ( 𝐴 ∈ V → ( [ 𝐴 / 𝑦 ] 𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝐴 ) ) |
12 |
11
|
abbi1dv |
⊢ ( 𝐴 ∈ V → { 𝑧 ∣ [ 𝐴 / 𝑦 ] 𝑧 ∈ 𝑦 } = 𝐴 ) |
13 |
10 12
|
eqtrid |
⊢ ( 𝐴 ∈ V → ⦋ 𝐴 / 𝑥 ⦌ 𝑥 = 𝐴 ) |
14 |
1 13
|
syl |
⊢ ( 𝐴 ∈ 𝑉 → ⦋ 𝐴 / 𝑥 ⦌ 𝑥 = 𝐴 ) |