| Step | Hyp | Ref | Expression | 
						
							| 1 |  | csbfrecsg | ⊢ ( 𝐴  ∈  𝑉  →  ⦋ 𝐴  /  𝑥 ⦌ frecs ( 𝑅 ,  𝐷 ,  ( 𝐹  ∘  2nd  ) )  =  frecs ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  ⦋ 𝐴  /  𝑥 ⦌ ( 𝐹  ∘  2nd  ) ) ) | 
						
							| 2 |  | eqid | ⊢ ⦋ 𝐴  /  𝑥 ⦌ 𝑅  =  ⦋ 𝐴  /  𝑥 ⦌ 𝑅 | 
						
							| 3 |  | eqid | ⊢ ⦋ 𝐴  /  𝑥 ⦌ 𝐷  =  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 | 
						
							| 4 |  | csbcog | ⊢ ( 𝐴  ∈  𝑉  →  ⦋ 𝐴  /  𝑥 ⦌ ( 𝐹  ∘  2nd  )  =  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐹  ∘  ⦋ 𝐴  /  𝑥 ⦌ 2nd  ) ) | 
						
							| 5 |  | csbconstg | ⊢ ( 𝐴  ∈  𝑉  →  ⦋ 𝐴  /  𝑥 ⦌ 2nd   =  2nd  ) | 
						
							| 6 | 5 | coeq2d | ⊢ ( 𝐴  ∈  𝑉  →  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐹  ∘  ⦋ 𝐴  /  𝑥 ⦌ 2nd  )  =  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐹  ∘  2nd  ) ) | 
						
							| 7 | 4 6 | eqtrd | ⊢ ( 𝐴  ∈  𝑉  →  ⦋ 𝐴  /  𝑥 ⦌ ( 𝐹  ∘  2nd  )  =  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐹  ∘  2nd  ) ) | 
						
							| 8 |  | frecseq123 | ⊢ ( ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅  =  ⦋ 𝐴  /  𝑥 ⦌ 𝑅  ∧  ⦋ 𝐴  /  𝑥 ⦌ 𝐷  =  ⦋ 𝐴  /  𝑥 ⦌ 𝐷  ∧  ⦋ 𝐴  /  𝑥 ⦌ ( 𝐹  ∘  2nd  )  =  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐹  ∘  2nd  ) )  →  frecs ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  ⦋ 𝐴  /  𝑥 ⦌ ( 𝐹  ∘  2nd  ) )  =  frecs ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐹  ∘  2nd  ) ) ) | 
						
							| 9 | 2 3 7 8 | mp3an12i | ⊢ ( 𝐴  ∈  𝑉  →  frecs ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  ⦋ 𝐴  /  𝑥 ⦌ ( 𝐹  ∘  2nd  ) )  =  frecs ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐹  ∘  2nd  ) ) ) | 
						
							| 10 | 1 9 | eqtrd | ⊢ ( 𝐴  ∈  𝑉  →  ⦋ 𝐴  /  𝑥 ⦌ frecs ( 𝑅 ,  𝐷 ,  ( 𝐹  ∘  2nd  ) )  =  frecs ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐹  ∘  2nd  ) ) ) | 
						
							| 11 |  | df-wrecs | ⊢ wrecs ( 𝑅 ,  𝐷 ,  𝐹 )  =  frecs ( 𝑅 ,  𝐷 ,  ( 𝐹  ∘  2nd  ) ) | 
						
							| 12 | 11 | csbeq2i | ⊢ ⦋ 𝐴  /  𝑥 ⦌ wrecs ( 𝑅 ,  𝐷 ,  𝐹 )  =  ⦋ 𝐴  /  𝑥 ⦌ frecs ( 𝑅 ,  𝐷 ,  ( 𝐹  ∘  2nd  ) ) | 
						
							| 13 |  | df-wrecs | ⊢ wrecs ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐹 )  =  frecs ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  ( ⦋ 𝐴  /  𝑥 ⦌ 𝐹  ∘  2nd  ) ) | 
						
							| 14 | 10 12 13 | 3eqtr4g | ⊢ ( 𝐴  ∈  𝑉  →  ⦋ 𝐴  /  𝑥 ⦌ wrecs ( 𝑅 ,  𝐷 ,  𝐹 )  =  wrecs ( ⦋ 𝐴  /  𝑥 ⦌ 𝑅 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐷 ,  ⦋ 𝐴  /  𝑥 ⦌ 𝐹 ) ) |