Metamath Proof Explorer


Theorem csbxpgVD

Description: Virtual deduction proof of csbxp . The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. csbxp is csbxpgVD without virtual deductions and was automatically derived from csbxpgVD .

1:: |- (. A e. V ->. A e. V ).
2:1: |- (. A e. V ->. ( [. A / x ]. w e. B <-> [_ A / x ]_ w e. [_ A / x ]_ B ) ).
3:1: |- (. A e. V ->. [_ A / x ]_ w = w ).
4:3: |- (. A e. V ->. ( [_ A / x ]_ w e. [_ A / x ]_ B <-> w e. [_ A / x ]_ B ) ).
5:2,4: |- (. A e. V ->. ( [. A / x ]. w e. B <-> w e. [_ A / x ]_ B ) ).
6:1: |- (. A e. V ->. ( [. A / x ]. y e. C <-> [_ A / x ]_ y e. [_ A / x ]_ C ) ).
7:1: |- (. A e. V ->. [_ A / x ]_ y = y ).
8:7: |- (. A e. V ->. ( [_ A / x ]_ y e. [_ A / x ]_ C <-> y e. [_ A / x ]_ C ) ).
9:6,8: |- (. A e. V ->. ( [. A / x ]. y e. C <-> y e. [_ A / x ]_ C ) ).
10:5,9: |- (. A e. V ->. ( ( [. A / x ]. w e. B /\ [. A / x ]. y e. C ) <-> ( w e. [_ A / x ]_ B /\ y e. [_ A / x ]_ C ) ) ).
11:1: |- (. A e. V ->. ( [. A / x ]. ( w e. B /\ y e. C ) <-> ( [. A / x ]. w e. B /\ [. A / x ]. y e. C ) ) ).
12:10,11: |- (. A e. V ->. ( [. A / x ]. ( w e. B /\ y e. C ) <-> ( w e. [_ A / x ]_ B /\ y e. [_ A / x ]_ C ) ) ).
13:1: |- (. A e. V ->. ( [. A / x ]. z = <. w ,. y >. <-> z = <. w , y >. ) ).
14:12,13: |- (. A e. V ->. ( ( [. A / x ]. z = <. w ,. y >. /\ [. A / x ]. ( w e. B /\ y e. C ) ) <-> ( z = <. w , y >. /\ ( w e. [_ A / x ]_ B /\ y e. [_ A / x ]_ C ) ) ) ).
15:1: |- (. A e. V ->. ( [. A / x ]. ( z = <. w ,. y >. /\ ( w e. B /\ y e. C ) ) <-> ( [. A / x ]. z = <. w , y >. /\ [. A / x ]. ( w e. B /\ y e. C ) ) ) ).
16:14,15: |- (. A e. V ->. ( [. A / x ]. ( z = <. w ,. y >. /\ ( w e. B /\ y e. C ) ) <-> ( z = <. w , y >. /\ ( w e. [_ A / x ]_ B /\ y e. [_ A / x ]_ C ) ) ) ).
17:16: |- (. A e. V ->. A. y ( [. A / x ]. ( z = <. w , y >. /\ ( w e. B /\ y e. C ) ) <-> ( z = <. w , y >. /\ ( w e. [_ A / x ]_ B /\ y e. [_ A / x ]_ C ) ) ) ).
18:17: |- (. A e. V ->. ( E. y [. A / x ]. ( z = <. w , y >. /\ ( w e. B /\ y e. C ) ) <-> E. y ( z = <. w , y >. /\ ( w e. [_ A / x ]_ B /\ y e. [_ A / x ]_ C ) ) ) ).
19:1: |- (. A e. V ->. ( [. A / x ]. E. y ( z = <. w , y >. /\ ( w e. B /\ y e. C ) ) <-> E. y [. A / x ]. ( z = <. w , y >. /\ ( w e. B /\ y e. C ) ) ) ).
20:18,19: |- (. A e. V ->. ( [. A / x ]. E. y ( z = <. w , y >. /\ ( w e. B /\ y e. C ) ) <-> E. y ( z = <. w , y >. /\ ( w e. [_ A / x ]_ B /\ y e. [_ A / x ]_ C ) ) ) ).
21:20: |- (. A e. V ->. A. w ( [. A / x ]. E. y ( z = <. w , y >. /\ ( w e. B /\ y e. C ) ) <-> E. y ( z = <. w , y >. /\ ( w e. [_ A / x ]_ B /\ y e. [_ A / x ]_ C ) ) ) ).
22:21: |- (. A e. V ->. ( E. w [. A / x ]. E. y ( z = <. w , y >. /\ ( w e. B /\ y e. C ) ) <-> E. w E. y ( z = <. w , y >. /\ ( w e. [_ A / x ]_ B /\ y e. [_ A / x ]_ C ) ) ) ).
23:1: |- (. A e. V ->. ( [. A / x ]. E. w E. y ( z = <. w , y >. /\ ( w e. B /\ y e. C ) ) <-> E. w [. A / x ]. E. y ( z = <. w , y >. /\ ( w e. B /\ y e. C ) ) ) ).
24:22,23: |- (. A e. V ->. ( [. A / x ]. E. w E. y ( z = <. w , y >. /\ ( w e. B /\ y e. C ) ) <-> E. w E. y ( z = <. w , y >. /\ ( w e. [_ A / x ]_ B /\ y e. [_ A / x ]_ C ) ) ) ).
25:24: |- (. A e. V ->. A. z ( [. A / x ]. E. w E. y ( z = <. w , y >. /\ ( w e. B /\ y e. C ) ) <-> E. w E. y ( z = <. w , y >. /\ ( w e. [_ A / x ]_ B /\ y e. [_ A / x ]_ C ) ) ) ).
26:25: |- (. A e. V ->. { z | [. A / x ]. E. w E. y ( z = <. w , y >. /\ ( w e. B /\ y e. C ) ) } = { z | E. w E. y ( z = <. w , y >. /\ ( w e. [_ A / x ]_ B /\ y e. [_ A / x ]_ C ) ) } ).
27:1: |- (. A e. V ->. [_ A / x ]_ { z | E. w E. y ( z = <. w , y >. /\ ( w e. B /\ y e. C ) ) } = { z | [. A / x ]. E. w E. y ( z = <. w , y >. /\ ( w e. B /\ y e. C ) ) } ).
28:26,27: |- (. A e. V ->. [_ A / x ]_ { z | E. w E. y ( z = <. w , y >. /\ ( w e. B /\ y e. C ) ) } = { z | E. w E. y ( z = <. w , y >. /\ ( w e. [_ A / x ]_ B /\ y e. [_ A / x ]_ C ) ) } ).
29:: |- { <. w ,. y >. | ( w e. B /\ y e. C ) } = { z | E. w E. y ( z = <. w , y >. /\ ( w e. B /\ y e. C ) ) }
30:: |- ( B X. C ) = { <. w ,. y >. | ( w e. B /\ y e. C ) }
31:29,30: |- ( B X. C ) = { z | E. w E. y ( z = <. w , y >. /\ ( w e. B /\ y e. C ) ) }
32:31: |- A. x ( B X. C ) = { z | E. w E. y ( z = <. w , y >. /\ ( w e. B /\ y e. C ) ) }
33:1,32: |- (. A e. V ->. [_ A / x ]_ ( B X. C ) = [_ A / x ]_ { z | E. w E. y ( z = <. w , y >. /\ ( w e. B /\ y e. C ) ) } ).
34:28,33: |- (. A e. V ->. [_ A / x ]_ ( B X. C ) = { z | E. w E. y ( z = <. w , y >. /\ ( w e. [_ A / x ]_ B /\ y e. [_ A / x ]_ C ) ) } ).
35:: |- { <. w ,. y >. | ( w e. [_ A / x ]_ B /\ y e. [_ A / x ]_ C ) } = { z | E. w E. y ( z = <. w , y >. /\ ( w e. [_ A / x ]_ B /\ y e. [_ A / x ]_ C ) ) }
36:: |- ( [_ A / x ]_ B X. [_ A / x ]_ C ) = { <. w , y >. | ( w e. [_ A / x ]_ B /\ y e. [_ A / x ]_ C ) }
37:35,36: |- ( [_ A / x ]_ B X. [_ A / x ]_ C ) = { z | E. w E. y ( z = <. w , y >. /\ ( w e. [_ A / x ]_ B /\ y e. [_ A / x ]_ C ) ) }
38:34,37: |- (. A e. V ->. [_ A / x ]_ ( B X. C ) = ( [_ A / x ]_ B X. [_ A / x ]_ C ) ).
qed:38: |- ( A e. V -> [_ A / x ]_ ( B X. C ) = ( [_ A / x ]_ B X. [_ A / x ]_ C ) )
(Contributed by Alan Sare, 10-Nov-2012) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion csbxpgVD ( 𝐴𝑉 𝐴 / 𝑥 ( 𝐵 × 𝐶 ) = ( 𝐴 / 𝑥 𝐵 × 𝐴 / 𝑥 𝐶 ) )

Proof

Step Hyp Ref Expression
1 idn1 (    𝐴𝑉    ▶    𝐴𝑉    )
2 sbcel12 ( [ 𝐴 / 𝑥 ] 𝑤𝐵 𝐴 / 𝑥 𝑤 𝐴 / 𝑥 𝐵 )
3 2 a1i ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ] 𝑤𝐵 𝐴 / 𝑥 𝑤 𝐴 / 𝑥 𝐵 ) )
4 1 3 e1a (    𝐴𝑉    ▶    ( [ 𝐴 / 𝑥 ] 𝑤𝐵 𝐴 / 𝑥 𝑤 𝐴 / 𝑥 𝐵 )    )
5 csbconstg ( 𝐴𝑉 𝐴 / 𝑥 𝑤 = 𝑤 )
6 1 5 e1a (    𝐴𝑉    ▶    𝐴 / 𝑥 𝑤 = 𝑤    )
7 eleq1 ( 𝐴 / 𝑥 𝑤 = 𝑤 → ( 𝐴 / 𝑥 𝑤 𝐴 / 𝑥 𝐵𝑤 𝐴 / 𝑥 𝐵 ) )
8 6 7 e1a (    𝐴𝑉    ▶    ( 𝐴 / 𝑥 𝑤 𝐴 / 𝑥 𝐵𝑤 𝐴 / 𝑥 𝐵 )    )
9 bibi1 ( ( [ 𝐴 / 𝑥 ] 𝑤𝐵 𝐴 / 𝑥 𝑤 𝐴 / 𝑥 𝐵 ) → ( ( [ 𝐴 / 𝑥 ] 𝑤𝐵𝑤 𝐴 / 𝑥 𝐵 ) ↔ ( 𝐴 / 𝑥 𝑤 𝐴 / 𝑥 𝐵𝑤 𝐴 / 𝑥 𝐵 ) ) )
10 9 biimprd ( ( [ 𝐴 / 𝑥 ] 𝑤𝐵 𝐴 / 𝑥 𝑤 𝐴 / 𝑥 𝐵 ) → ( ( 𝐴 / 𝑥 𝑤 𝐴 / 𝑥 𝐵𝑤 𝐴 / 𝑥 𝐵 ) → ( [ 𝐴 / 𝑥 ] 𝑤𝐵𝑤 𝐴 / 𝑥 𝐵 ) ) )
11 4 8 10 e11 (    𝐴𝑉    ▶    ( [ 𝐴 / 𝑥 ] 𝑤𝐵𝑤 𝐴 / 𝑥 𝐵 )    )
12 sbcel12 ( [ 𝐴 / 𝑥 ] 𝑦𝐶 𝐴 / 𝑥 𝑦 𝐴 / 𝑥 𝐶 )
13 12 a1i ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ] 𝑦𝐶 𝐴 / 𝑥 𝑦 𝐴 / 𝑥 𝐶 ) )
14 1 13 e1a (    𝐴𝑉    ▶    ( [ 𝐴 / 𝑥 ] 𝑦𝐶 𝐴 / 𝑥 𝑦 𝐴 / 𝑥 𝐶 )    )
15 csbconstg ( 𝐴𝑉 𝐴 / 𝑥 𝑦 = 𝑦 )
16 1 15 e1a (    𝐴𝑉    ▶    𝐴 / 𝑥 𝑦 = 𝑦    )
17 eleq1 ( 𝐴 / 𝑥 𝑦 = 𝑦 → ( 𝐴 / 𝑥 𝑦 𝐴 / 𝑥 𝐶𝑦 𝐴 / 𝑥 𝐶 ) )
18 16 17 e1a (    𝐴𝑉    ▶    ( 𝐴 / 𝑥 𝑦 𝐴 / 𝑥 𝐶𝑦 𝐴 / 𝑥 𝐶 )    )
19 bibi1 ( ( [ 𝐴 / 𝑥 ] 𝑦𝐶 𝐴 / 𝑥 𝑦 𝐴 / 𝑥 𝐶 ) → ( ( [ 𝐴 / 𝑥 ] 𝑦𝐶𝑦 𝐴 / 𝑥 𝐶 ) ↔ ( 𝐴 / 𝑥 𝑦 𝐴 / 𝑥 𝐶𝑦 𝐴 / 𝑥 𝐶 ) ) )
20 19 biimprd ( ( [ 𝐴 / 𝑥 ] 𝑦𝐶 𝐴 / 𝑥 𝑦 𝐴 / 𝑥 𝐶 ) → ( ( 𝐴 / 𝑥 𝑦 𝐴 / 𝑥 𝐶𝑦 𝐴 / 𝑥 𝐶 ) → ( [ 𝐴 / 𝑥 ] 𝑦𝐶𝑦 𝐴 / 𝑥 𝐶 ) ) )
21 14 18 20 e11 (    𝐴𝑉    ▶    ( [ 𝐴 / 𝑥 ] 𝑦𝐶𝑦 𝐴 / 𝑥 𝐶 )    )
22 pm4.38 ( ( ( [ 𝐴 / 𝑥 ] 𝑤𝐵𝑤 𝐴 / 𝑥 𝐵 ) ∧ ( [ 𝐴 / 𝑥 ] 𝑦𝐶𝑦 𝐴 / 𝑥 𝐶 ) ) → ( ( [ 𝐴 / 𝑥 ] 𝑤𝐵[ 𝐴 / 𝑥 ] 𝑦𝐶 ) ↔ ( 𝑤 𝐴 / 𝑥 𝐵𝑦 𝐴 / 𝑥 𝐶 ) ) )
23 22 ex ( ( [ 𝐴 / 𝑥 ] 𝑤𝐵𝑤 𝐴 / 𝑥 𝐵 ) → ( ( [ 𝐴 / 𝑥 ] 𝑦𝐶𝑦 𝐴 / 𝑥 𝐶 ) → ( ( [ 𝐴 / 𝑥 ] 𝑤𝐵[ 𝐴 / 𝑥 ] 𝑦𝐶 ) ↔ ( 𝑤 𝐴 / 𝑥 𝐵𝑦 𝐴 / 𝑥 𝐶 ) ) ) )
24 11 21 23 e11 (    𝐴𝑉    ▶    ( ( [ 𝐴 / 𝑥 ] 𝑤𝐵[ 𝐴 / 𝑥 ] 𝑦𝐶 ) ↔ ( 𝑤 𝐴 / 𝑥 𝐵𝑦 𝐴 / 𝑥 𝐶 ) )    )
25 sbcan ( [ 𝐴 / 𝑥 ] ( 𝑤𝐵𝑦𝐶 ) ↔ ( [ 𝐴 / 𝑥 ] 𝑤𝐵[ 𝐴 / 𝑥 ] 𝑦𝐶 ) )
26 25 a1i ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ] ( 𝑤𝐵𝑦𝐶 ) ↔ ( [ 𝐴 / 𝑥 ] 𝑤𝐵[ 𝐴 / 𝑥 ] 𝑦𝐶 ) ) )
27 1 26 e1a (    𝐴𝑉    ▶    ( [ 𝐴 / 𝑥 ] ( 𝑤𝐵𝑦𝐶 ) ↔ ( [ 𝐴 / 𝑥 ] 𝑤𝐵[ 𝐴 / 𝑥 ] 𝑦𝐶 ) )    )
28 bibi1 ( ( [ 𝐴 / 𝑥 ] ( 𝑤𝐵𝑦𝐶 ) ↔ ( [ 𝐴 / 𝑥 ] 𝑤𝐵[ 𝐴 / 𝑥 ] 𝑦𝐶 ) ) → ( ( [ 𝐴 / 𝑥 ] ( 𝑤𝐵𝑦𝐶 ) ↔ ( 𝑤 𝐴 / 𝑥 𝐵𝑦 𝐴 / 𝑥 𝐶 ) ) ↔ ( ( [ 𝐴 / 𝑥 ] 𝑤𝐵[ 𝐴 / 𝑥 ] 𝑦𝐶 ) ↔ ( 𝑤 𝐴 / 𝑥 𝐵𝑦 𝐴 / 𝑥 𝐶 ) ) ) )
29 28 biimprcd ( ( ( [ 𝐴 / 𝑥 ] 𝑤𝐵[ 𝐴 / 𝑥 ] 𝑦𝐶 ) ↔ ( 𝑤 𝐴 / 𝑥 𝐵𝑦 𝐴 / 𝑥 𝐶 ) ) → ( ( [ 𝐴 / 𝑥 ] ( 𝑤𝐵𝑦𝐶 ) ↔ ( [ 𝐴 / 𝑥 ] 𝑤𝐵[ 𝐴 / 𝑥 ] 𝑦𝐶 ) ) → ( [ 𝐴 / 𝑥 ] ( 𝑤𝐵𝑦𝐶 ) ↔ ( 𝑤 𝐴 / 𝑥 𝐵𝑦 𝐴 / 𝑥 𝐶 ) ) ) )
30 24 27 29 e11 (    𝐴𝑉    ▶    ( [ 𝐴 / 𝑥 ] ( 𝑤𝐵𝑦𝐶 ) ↔ ( 𝑤 𝐴 / 𝑥 𝐵𝑦 𝐴 / 𝑥 𝐶 ) )    )
31 sbcg ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ] 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ↔ 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ) )
32 1 31 e1a (    𝐴𝑉    ▶    ( [ 𝐴 / 𝑥 ] 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ↔ 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ )    )
33 pm4.38 ( ( ( [ 𝐴 / 𝑥 ] 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ↔ 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ) ∧ ( [ 𝐴 / 𝑥 ] ( 𝑤𝐵𝑦𝐶 ) ↔ ( 𝑤 𝐴 / 𝑥 𝐵𝑦 𝐴 / 𝑥 𝐶 ) ) ) → ( ( [ 𝐴 / 𝑥 ] 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ [ 𝐴 / 𝑥 ] ( 𝑤𝐵𝑦𝐶 ) ) ↔ ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤 𝐴 / 𝑥 𝐵𝑦 𝐴 / 𝑥 𝐶 ) ) ) )
34 33 expcom ( ( [ 𝐴 / 𝑥 ] ( 𝑤𝐵𝑦𝐶 ) ↔ ( 𝑤 𝐴 / 𝑥 𝐵𝑦 𝐴 / 𝑥 𝐶 ) ) → ( ( [ 𝐴 / 𝑥 ] 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ↔ 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ) → ( ( [ 𝐴 / 𝑥 ] 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ [ 𝐴 / 𝑥 ] ( 𝑤𝐵𝑦𝐶 ) ) ↔ ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤 𝐴 / 𝑥 𝐵𝑦 𝐴 / 𝑥 𝐶 ) ) ) ) )
35 30 32 34 e11 (    𝐴𝑉    ▶    ( ( [ 𝐴 / 𝑥 ] 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ [ 𝐴 / 𝑥 ] ( 𝑤𝐵𝑦𝐶 ) ) ↔ ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤 𝐴 / 𝑥 𝐵𝑦 𝐴 / 𝑥 𝐶 ) ) )    )
36 sbcan ( [ 𝐴 / 𝑥 ] ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤𝐵𝑦𝐶 ) ) ↔ ( [ 𝐴 / 𝑥 ] 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ [ 𝐴 / 𝑥 ] ( 𝑤𝐵𝑦𝐶 ) ) )
37 36 a1i ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ] ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤𝐵𝑦𝐶 ) ) ↔ ( [ 𝐴 / 𝑥 ] 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ [ 𝐴 / 𝑥 ] ( 𝑤𝐵𝑦𝐶 ) ) ) )
38 1 37 e1a (    𝐴𝑉    ▶    ( [ 𝐴 / 𝑥 ] ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤𝐵𝑦𝐶 ) ) ↔ ( [ 𝐴 / 𝑥 ] 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ [ 𝐴 / 𝑥 ] ( 𝑤𝐵𝑦𝐶 ) ) )    )
39 bibi1 ( ( [ 𝐴 / 𝑥 ] ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤𝐵𝑦𝐶 ) ) ↔ ( [ 𝐴 / 𝑥 ] 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ [ 𝐴 / 𝑥 ] ( 𝑤𝐵𝑦𝐶 ) ) ) → ( ( [ 𝐴 / 𝑥 ] ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤𝐵𝑦𝐶 ) ) ↔ ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤 𝐴 / 𝑥 𝐵𝑦 𝐴 / 𝑥 𝐶 ) ) ) ↔ ( ( [ 𝐴 / 𝑥 ] 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ [ 𝐴 / 𝑥 ] ( 𝑤𝐵𝑦𝐶 ) ) ↔ ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤 𝐴 / 𝑥 𝐵𝑦 𝐴 / 𝑥 𝐶 ) ) ) ) )
40 39 biimprcd ( ( ( [ 𝐴 / 𝑥 ] 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ [ 𝐴 / 𝑥 ] ( 𝑤𝐵𝑦𝐶 ) ) ↔ ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤 𝐴 / 𝑥 𝐵𝑦 𝐴 / 𝑥 𝐶 ) ) ) → ( ( [ 𝐴 / 𝑥 ] ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤𝐵𝑦𝐶 ) ) ↔ ( [ 𝐴 / 𝑥 ] 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ [ 𝐴 / 𝑥 ] ( 𝑤𝐵𝑦𝐶 ) ) ) → ( [ 𝐴 / 𝑥 ] ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤𝐵𝑦𝐶 ) ) ↔ ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤 𝐴 / 𝑥 𝐵𝑦 𝐴 / 𝑥 𝐶 ) ) ) ) )
41 35 38 40 e11 (    𝐴𝑉    ▶    ( [ 𝐴 / 𝑥 ] ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤𝐵𝑦𝐶 ) ) ↔ ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤 𝐴 / 𝑥 𝐵𝑦 𝐴 / 𝑥 𝐶 ) ) )    )
42 41 gen11 (    𝐴𝑉    ▶   𝑦 ( [ 𝐴 / 𝑥 ] ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤𝐵𝑦𝐶 ) ) ↔ ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤 𝐴 / 𝑥 𝐵𝑦 𝐴 / 𝑥 𝐶 ) ) )    )
43 exbi ( ∀ 𝑦 ( [ 𝐴 / 𝑥 ] ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤𝐵𝑦𝐶 ) ) ↔ ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤 𝐴 / 𝑥 𝐵𝑦 𝐴 / 𝑥 𝐶 ) ) ) → ( ∃ 𝑦 [ 𝐴 / 𝑥 ] ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤𝐵𝑦𝐶 ) ) ↔ ∃ 𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤 𝐴 / 𝑥 𝐵𝑦 𝐴 / 𝑥 𝐶 ) ) ) )
44 42 43 e1a (    𝐴𝑉    ▶    ( ∃ 𝑦 [ 𝐴 / 𝑥 ] ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤𝐵𝑦𝐶 ) ) ↔ ∃ 𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤 𝐴 / 𝑥 𝐵𝑦 𝐴 / 𝑥 𝐶 ) ) )    )
45 sbcex2 ( [ 𝐴 / 𝑥 ]𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤𝐵𝑦𝐶 ) ) ↔ ∃ 𝑦 [ 𝐴 / 𝑥 ] ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤𝐵𝑦𝐶 ) ) )
46 45 a1i ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ]𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤𝐵𝑦𝐶 ) ) ↔ ∃ 𝑦 [ 𝐴 / 𝑥 ] ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤𝐵𝑦𝐶 ) ) ) )
47 1 46 e1a (    𝐴𝑉    ▶    ( [ 𝐴 / 𝑥 ]𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤𝐵𝑦𝐶 ) ) ↔ ∃ 𝑦 [ 𝐴 / 𝑥 ] ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤𝐵𝑦𝐶 ) ) )    )
48 bibi1 ( ( [ 𝐴 / 𝑥 ]𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤𝐵𝑦𝐶 ) ) ↔ ∃ 𝑦 [ 𝐴 / 𝑥 ] ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤𝐵𝑦𝐶 ) ) ) → ( ( [ 𝐴 / 𝑥 ]𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤𝐵𝑦𝐶 ) ) ↔ ∃ 𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤 𝐴 / 𝑥 𝐵𝑦 𝐴 / 𝑥 𝐶 ) ) ) ↔ ( ∃ 𝑦 [ 𝐴 / 𝑥 ] ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤𝐵𝑦𝐶 ) ) ↔ ∃ 𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤 𝐴 / 𝑥 𝐵𝑦 𝐴 / 𝑥 𝐶 ) ) ) ) )
49 48 biimprcd ( ( ∃ 𝑦 [ 𝐴 / 𝑥 ] ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤𝐵𝑦𝐶 ) ) ↔ ∃ 𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤 𝐴 / 𝑥 𝐵𝑦 𝐴 / 𝑥 𝐶 ) ) ) → ( ( [ 𝐴 / 𝑥 ]𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤𝐵𝑦𝐶 ) ) ↔ ∃ 𝑦 [ 𝐴 / 𝑥 ] ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤𝐵𝑦𝐶 ) ) ) → ( [ 𝐴 / 𝑥 ]𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤𝐵𝑦𝐶 ) ) ↔ ∃ 𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤 𝐴 / 𝑥 𝐵𝑦 𝐴 / 𝑥 𝐶 ) ) ) ) )
50 44 47 49 e11 (    𝐴𝑉    ▶    ( [ 𝐴 / 𝑥 ]𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤𝐵𝑦𝐶 ) ) ↔ ∃ 𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤 𝐴 / 𝑥 𝐵𝑦 𝐴 / 𝑥 𝐶 ) ) )    )
51 50 gen11 (    𝐴𝑉    ▶   𝑤 ( [ 𝐴 / 𝑥 ]𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤𝐵𝑦𝐶 ) ) ↔ ∃ 𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤 𝐴 / 𝑥 𝐵𝑦 𝐴 / 𝑥 𝐶 ) ) )    )
52 exbi ( ∀ 𝑤 ( [ 𝐴 / 𝑥 ]𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤𝐵𝑦𝐶 ) ) ↔ ∃ 𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤 𝐴 / 𝑥 𝐵𝑦 𝐴 / 𝑥 𝐶 ) ) ) → ( ∃ 𝑤 [ 𝐴 / 𝑥 ]𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤𝐵𝑦𝐶 ) ) ↔ ∃ 𝑤𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤 𝐴 / 𝑥 𝐵𝑦 𝐴 / 𝑥 𝐶 ) ) ) )
53 51 52 e1a (    𝐴𝑉    ▶    ( ∃ 𝑤 [ 𝐴 / 𝑥 ]𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤𝐵𝑦𝐶 ) ) ↔ ∃ 𝑤𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤 𝐴 / 𝑥 𝐵𝑦 𝐴 / 𝑥 𝐶 ) ) )    )
54 sbcex2 ( [ 𝐴 / 𝑥 ]𝑤𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤𝐵𝑦𝐶 ) ) ↔ ∃ 𝑤 [ 𝐴 / 𝑥 ]𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤𝐵𝑦𝐶 ) ) )
55 54 a1i ( 𝐴𝑉 → ( [ 𝐴 / 𝑥 ]𝑤𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤𝐵𝑦𝐶 ) ) ↔ ∃ 𝑤 [ 𝐴 / 𝑥 ]𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤𝐵𝑦𝐶 ) ) ) )
56 1 55 e1a (    𝐴𝑉    ▶    ( [ 𝐴 / 𝑥 ]𝑤𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤𝐵𝑦𝐶 ) ) ↔ ∃ 𝑤 [ 𝐴 / 𝑥 ]𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤𝐵𝑦𝐶 ) ) )    )
57 bibi1 ( ( [ 𝐴 / 𝑥 ]𝑤𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤𝐵𝑦𝐶 ) ) ↔ ∃ 𝑤 [ 𝐴 / 𝑥 ]𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤𝐵𝑦𝐶 ) ) ) → ( ( [ 𝐴 / 𝑥 ]𝑤𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤𝐵𝑦𝐶 ) ) ↔ ∃ 𝑤𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤 𝐴 / 𝑥 𝐵𝑦 𝐴 / 𝑥 𝐶 ) ) ) ↔ ( ∃ 𝑤 [ 𝐴 / 𝑥 ]𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤𝐵𝑦𝐶 ) ) ↔ ∃ 𝑤𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤 𝐴 / 𝑥 𝐵𝑦 𝐴 / 𝑥 𝐶 ) ) ) ) )
58 57 biimprcd ( ( ∃ 𝑤 [ 𝐴 / 𝑥 ]𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤𝐵𝑦𝐶 ) ) ↔ ∃ 𝑤𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤 𝐴 / 𝑥 𝐵𝑦 𝐴 / 𝑥 𝐶 ) ) ) → ( ( [ 𝐴 / 𝑥 ]𝑤𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤𝐵𝑦𝐶 ) ) ↔ ∃ 𝑤 [ 𝐴 / 𝑥 ]𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤𝐵𝑦𝐶 ) ) ) → ( [ 𝐴 / 𝑥 ]𝑤𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤𝐵𝑦𝐶 ) ) ↔ ∃ 𝑤𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤 𝐴 / 𝑥 𝐵𝑦 𝐴 / 𝑥 𝐶 ) ) ) ) )
59 53 56 58 e11 (    𝐴𝑉    ▶    ( [ 𝐴 / 𝑥 ]𝑤𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤𝐵𝑦𝐶 ) ) ↔ ∃ 𝑤𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤 𝐴 / 𝑥 𝐵𝑦 𝐴 / 𝑥 𝐶 ) ) )    )
60 59 gen11 (    𝐴𝑉    ▶   𝑧 ( [ 𝐴 / 𝑥 ]𝑤𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤𝐵𝑦𝐶 ) ) ↔ ∃ 𝑤𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤 𝐴 / 𝑥 𝐵𝑦 𝐴 / 𝑥 𝐶 ) ) )    )
61 abbi ( ∀ 𝑧 ( [ 𝐴 / 𝑥 ]𝑤𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤𝐵𝑦𝐶 ) ) ↔ ∃ 𝑤𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤 𝐴 / 𝑥 𝐵𝑦 𝐴 / 𝑥 𝐶 ) ) ) ↔ { 𝑧[ 𝐴 / 𝑥 ]𝑤𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤𝐵𝑦𝐶 ) ) } = { 𝑧 ∣ ∃ 𝑤𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤 𝐴 / 𝑥 𝐵𝑦 𝐴 / 𝑥 𝐶 ) ) } )
62 61 biimpi ( ∀ 𝑧 ( [ 𝐴 / 𝑥 ]𝑤𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤𝐵𝑦𝐶 ) ) ↔ ∃ 𝑤𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤 𝐴 / 𝑥 𝐵𝑦 𝐴 / 𝑥 𝐶 ) ) ) → { 𝑧[ 𝐴 / 𝑥 ]𝑤𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤𝐵𝑦𝐶 ) ) } = { 𝑧 ∣ ∃ 𝑤𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤 𝐴 / 𝑥 𝐵𝑦 𝐴 / 𝑥 𝐶 ) ) } )
63 60 62 e1a (    𝐴𝑉    ▶    { 𝑧[ 𝐴 / 𝑥 ]𝑤𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤𝐵𝑦𝐶 ) ) } = { 𝑧 ∣ ∃ 𝑤𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤 𝐴 / 𝑥 𝐵𝑦 𝐴 / 𝑥 𝐶 ) ) }    )
64 csbab 𝐴 / 𝑥 { 𝑧 ∣ ∃ 𝑤𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤𝐵𝑦𝐶 ) ) } = { 𝑧[ 𝐴 / 𝑥 ]𝑤𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤𝐵𝑦𝐶 ) ) }
65 64 a1i ( 𝐴𝑉 𝐴 / 𝑥 { 𝑧 ∣ ∃ 𝑤𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤𝐵𝑦𝐶 ) ) } = { 𝑧[ 𝐴 / 𝑥 ]𝑤𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤𝐵𝑦𝐶 ) ) } )
66 1 65 e1a (    𝐴𝑉    ▶    𝐴 / 𝑥 { 𝑧 ∣ ∃ 𝑤𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤𝐵𝑦𝐶 ) ) } = { 𝑧[ 𝐴 / 𝑥 ]𝑤𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤𝐵𝑦𝐶 ) ) }    )
67 eqeq2 ( { 𝑧[ 𝐴 / 𝑥 ]𝑤𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤𝐵𝑦𝐶 ) ) } = { 𝑧 ∣ ∃ 𝑤𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤 𝐴 / 𝑥 𝐵𝑦 𝐴 / 𝑥 𝐶 ) ) } → ( 𝐴 / 𝑥 { 𝑧 ∣ ∃ 𝑤𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤𝐵𝑦𝐶 ) ) } = { 𝑧[ 𝐴 / 𝑥 ]𝑤𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤𝐵𝑦𝐶 ) ) } ↔ 𝐴 / 𝑥 { 𝑧 ∣ ∃ 𝑤𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤𝐵𝑦𝐶 ) ) } = { 𝑧 ∣ ∃ 𝑤𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤 𝐴 / 𝑥 𝐵𝑦 𝐴 / 𝑥 𝐶 ) ) } ) )
68 67 biimpd ( { 𝑧[ 𝐴 / 𝑥 ]𝑤𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤𝐵𝑦𝐶 ) ) } = { 𝑧 ∣ ∃ 𝑤𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤 𝐴 / 𝑥 𝐵𝑦 𝐴 / 𝑥 𝐶 ) ) } → ( 𝐴 / 𝑥 { 𝑧 ∣ ∃ 𝑤𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤𝐵𝑦𝐶 ) ) } = { 𝑧[ 𝐴 / 𝑥 ]𝑤𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤𝐵𝑦𝐶 ) ) } → 𝐴 / 𝑥 { 𝑧 ∣ ∃ 𝑤𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤𝐵𝑦𝐶 ) ) } = { 𝑧 ∣ ∃ 𝑤𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤 𝐴 / 𝑥 𝐵𝑦 𝐴 / 𝑥 𝐶 ) ) } ) )
69 63 66 68 e11 (    𝐴𝑉    ▶    𝐴 / 𝑥 { 𝑧 ∣ ∃ 𝑤𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤𝐵𝑦𝐶 ) ) } = { 𝑧 ∣ ∃ 𝑤𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤 𝐴 / 𝑥 𝐵𝑦 𝐴 / 𝑥 𝐶 ) ) }    )
70 df-xp ( 𝐵 × 𝐶 ) = { ⟨ 𝑤 , 𝑦 ⟩ ∣ ( 𝑤𝐵𝑦𝐶 ) }
71 df-opab { ⟨ 𝑤 , 𝑦 ⟩ ∣ ( 𝑤𝐵𝑦𝐶 ) } = { 𝑧 ∣ ∃ 𝑤𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤𝐵𝑦𝐶 ) ) }
72 70 71 eqtri ( 𝐵 × 𝐶 ) = { 𝑧 ∣ ∃ 𝑤𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤𝐵𝑦𝐶 ) ) }
73 72 ax-gen 𝑥 ( 𝐵 × 𝐶 ) = { 𝑧 ∣ ∃ 𝑤𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤𝐵𝑦𝐶 ) ) }
74 csbeq2 ( ∀ 𝑥 ( 𝐵 × 𝐶 ) = { 𝑧 ∣ ∃ 𝑤𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤𝐵𝑦𝐶 ) ) } → 𝐴 / 𝑥 ( 𝐵 × 𝐶 ) = 𝐴 / 𝑥 { 𝑧 ∣ ∃ 𝑤𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤𝐵𝑦𝐶 ) ) } )
75 74 a1i ( 𝐴𝑉 → ( ∀ 𝑥 ( 𝐵 × 𝐶 ) = { 𝑧 ∣ ∃ 𝑤𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤𝐵𝑦𝐶 ) ) } → 𝐴 / 𝑥 ( 𝐵 × 𝐶 ) = 𝐴 / 𝑥 { 𝑧 ∣ ∃ 𝑤𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤𝐵𝑦𝐶 ) ) } ) )
76 1 73 75 e10 (    𝐴𝑉    ▶    𝐴 / 𝑥 ( 𝐵 × 𝐶 ) = 𝐴 / 𝑥 { 𝑧 ∣ ∃ 𝑤𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤𝐵𝑦𝐶 ) ) }    )
77 eqeq2 ( 𝐴 / 𝑥 { 𝑧 ∣ ∃ 𝑤𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤𝐵𝑦𝐶 ) ) } = { 𝑧 ∣ ∃ 𝑤𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤 𝐴 / 𝑥 𝐵𝑦 𝐴 / 𝑥 𝐶 ) ) } → ( 𝐴 / 𝑥 ( 𝐵 × 𝐶 ) = 𝐴 / 𝑥 { 𝑧 ∣ ∃ 𝑤𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤𝐵𝑦𝐶 ) ) } ↔ 𝐴 / 𝑥 ( 𝐵 × 𝐶 ) = { 𝑧 ∣ ∃ 𝑤𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤 𝐴 / 𝑥 𝐵𝑦 𝐴 / 𝑥 𝐶 ) ) } ) )
78 77 biimpd ( 𝐴 / 𝑥 { 𝑧 ∣ ∃ 𝑤𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤𝐵𝑦𝐶 ) ) } = { 𝑧 ∣ ∃ 𝑤𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤 𝐴 / 𝑥 𝐵𝑦 𝐴 / 𝑥 𝐶 ) ) } → ( 𝐴 / 𝑥 ( 𝐵 × 𝐶 ) = 𝐴 / 𝑥 { 𝑧 ∣ ∃ 𝑤𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤𝐵𝑦𝐶 ) ) } → 𝐴 / 𝑥 ( 𝐵 × 𝐶 ) = { 𝑧 ∣ ∃ 𝑤𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤 𝐴 / 𝑥 𝐵𝑦 𝐴 / 𝑥 𝐶 ) ) } ) )
79 69 76 78 e11 (    𝐴𝑉    ▶    𝐴 / 𝑥 ( 𝐵 × 𝐶 ) = { 𝑧 ∣ ∃ 𝑤𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤 𝐴 / 𝑥 𝐵𝑦 𝐴 / 𝑥 𝐶 ) ) }    )
80 df-xp ( 𝐴 / 𝑥 𝐵 × 𝐴 / 𝑥 𝐶 ) = { ⟨ 𝑤 , 𝑦 ⟩ ∣ ( 𝑤 𝐴 / 𝑥 𝐵𝑦 𝐴 / 𝑥 𝐶 ) }
81 df-opab { ⟨ 𝑤 , 𝑦 ⟩ ∣ ( 𝑤 𝐴 / 𝑥 𝐵𝑦 𝐴 / 𝑥 𝐶 ) } = { 𝑧 ∣ ∃ 𝑤𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤 𝐴 / 𝑥 𝐵𝑦 𝐴 / 𝑥 𝐶 ) ) }
82 80 81 eqtri ( 𝐴 / 𝑥 𝐵 × 𝐴 / 𝑥 𝐶 ) = { 𝑧 ∣ ∃ 𝑤𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤 𝐴 / 𝑥 𝐵𝑦 𝐴 / 𝑥 𝐶 ) ) }
83 eqeq2 ( ( 𝐴 / 𝑥 𝐵 × 𝐴 / 𝑥 𝐶 ) = { 𝑧 ∣ ∃ 𝑤𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤 𝐴 / 𝑥 𝐵𝑦 𝐴 / 𝑥 𝐶 ) ) } → ( 𝐴 / 𝑥 ( 𝐵 × 𝐶 ) = ( 𝐴 / 𝑥 𝐵 × 𝐴 / 𝑥 𝐶 ) ↔ 𝐴 / 𝑥 ( 𝐵 × 𝐶 ) = { 𝑧 ∣ ∃ 𝑤𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤 𝐴 / 𝑥 𝐵𝑦 𝐴 / 𝑥 𝐶 ) ) } ) )
84 83 biimprcd ( 𝐴 / 𝑥 ( 𝐵 × 𝐶 ) = { 𝑧 ∣ ∃ 𝑤𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤 𝐴 / 𝑥 𝐵𝑦 𝐴 / 𝑥 𝐶 ) ) } → ( ( 𝐴 / 𝑥 𝐵 × 𝐴 / 𝑥 𝐶 ) = { 𝑧 ∣ ∃ 𝑤𝑦 ( 𝑧 = ⟨ 𝑤 , 𝑦 ⟩ ∧ ( 𝑤 𝐴 / 𝑥 𝐵𝑦 𝐴 / 𝑥 𝐶 ) ) } → 𝐴 / 𝑥 ( 𝐵 × 𝐶 ) = ( 𝐴 / 𝑥 𝐵 × 𝐴 / 𝑥 𝐶 ) ) )
85 79 82 84 e10 (    𝐴𝑉    ▶    𝐴 / 𝑥 ( 𝐵 × 𝐶 ) = ( 𝐴 / 𝑥 𝐵 × 𝐴 / 𝑥 𝐶 )    )
86 85 in1 ( 𝐴𝑉 𝐴 / 𝑥 ( 𝐵 × 𝐶 ) = ( 𝐴 / 𝑥 𝐵 × 𝐴 / 𝑥 𝐶 ) )