Metamath Proof Explorer


Theorem csdfil

Description: The set of all elements whose complement is dominated by the base set is a filter. (Contributed by Mario Carneiro, 14-Dec-2013) (Revised by Stefan O'Rear, 2-Aug-2015)

Ref Expression
Assertion csdfil ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) → { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋𝑥 ) ≺ 𝑋 } ∈ ( Fil ‘ 𝑋 ) )

Proof

Step Hyp Ref Expression
1 difeq2 ( 𝑥 = 𝑦 → ( 𝑋𝑥 ) = ( 𝑋𝑦 ) )
2 1 breq1d ( 𝑥 = 𝑦 → ( ( 𝑋𝑥 ) ≺ 𝑋 ↔ ( 𝑋𝑦 ) ≺ 𝑋 ) )
3 2 elrab ( 𝑦 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋𝑥 ) ≺ 𝑋 } ↔ ( 𝑦 ∈ 𝒫 𝑋 ∧ ( 𝑋𝑦 ) ≺ 𝑋 ) )
4 velpw ( 𝑦 ∈ 𝒫 𝑋𝑦𝑋 )
5 4 anbi1i ( ( 𝑦 ∈ 𝒫 𝑋 ∧ ( 𝑋𝑦 ) ≺ 𝑋 ) ↔ ( 𝑦𝑋 ∧ ( 𝑋𝑦 ) ≺ 𝑋 ) )
6 3 5 bitri ( 𝑦 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋𝑥 ) ≺ 𝑋 } ↔ ( 𝑦𝑋 ∧ ( 𝑋𝑦 ) ≺ 𝑋 ) )
7 6 a1i ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) → ( 𝑦 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋𝑥 ) ≺ 𝑋 } ↔ ( 𝑦𝑋 ∧ ( 𝑋𝑦 ) ≺ 𝑋 ) ) )
8 simpl ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) → 𝑋 ∈ dom card )
9 difid ( 𝑋𝑋 ) = ∅
10 infn0 ( ω ≼ 𝑋𝑋 ≠ ∅ )
11 10 adantl ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) → 𝑋 ≠ ∅ )
12 0sdomg ( 𝑋 ∈ dom card → ( ∅ ≺ 𝑋𝑋 ≠ ∅ ) )
13 12 adantr ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) → ( ∅ ≺ 𝑋𝑋 ≠ ∅ ) )
14 11 13 mpbird ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) → ∅ ≺ 𝑋 )
15 9 14 eqbrtrid ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) → ( 𝑋𝑋 ) ≺ 𝑋 )
16 difeq2 ( 𝑦 = 𝑋 → ( 𝑋𝑦 ) = ( 𝑋𝑋 ) )
17 16 breq1d ( 𝑦 = 𝑋 → ( ( 𝑋𝑦 ) ≺ 𝑋 ↔ ( 𝑋𝑋 ) ≺ 𝑋 ) )
18 17 sbcieg ( 𝑋 ∈ dom card → ( [ 𝑋 / 𝑦 ] ( 𝑋𝑦 ) ≺ 𝑋 ↔ ( 𝑋𝑋 ) ≺ 𝑋 ) )
19 18 adantr ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) → ( [ 𝑋 / 𝑦 ] ( 𝑋𝑦 ) ≺ 𝑋 ↔ ( 𝑋𝑋 ) ≺ 𝑋 ) )
20 15 19 mpbird ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) → [ 𝑋 / 𝑦 ] ( 𝑋𝑦 ) ≺ 𝑋 )
21 sdomirr ¬ 𝑋𝑋
22 0ex ∅ ∈ V
23 difeq2 ( 𝑦 = ∅ → ( 𝑋𝑦 ) = ( 𝑋 ∖ ∅ ) )
24 dif0 ( 𝑋 ∖ ∅ ) = 𝑋
25 23 24 eqtrdi ( 𝑦 = ∅ → ( 𝑋𝑦 ) = 𝑋 )
26 25 breq1d ( 𝑦 = ∅ → ( ( 𝑋𝑦 ) ≺ 𝑋𝑋𝑋 ) )
27 22 26 sbcie ( [ ∅ / 𝑦 ] ( 𝑋𝑦 ) ≺ 𝑋𝑋𝑋 )
28 27 a1i ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) → ( [ ∅ / 𝑦 ] ( 𝑋𝑦 ) ≺ 𝑋𝑋𝑋 ) )
29 21 28 mtbiri ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) → ¬ [ ∅ / 𝑦 ] ( 𝑋𝑦 ) ≺ 𝑋 )
30 simp1l ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ 𝑧𝑋𝑤𝑧 ) → 𝑋 ∈ dom card )
31 30 difexd ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ 𝑧𝑋𝑤𝑧 ) → ( 𝑋𝑤 ) ∈ V )
32 sscon ( 𝑤𝑧 → ( 𝑋𝑧 ) ⊆ ( 𝑋𝑤 ) )
33 32 3ad2ant3 ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ 𝑧𝑋𝑤𝑧 ) → ( 𝑋𝑧 ) ⊆ ( 𝑋𝑤 ) )
34 ssdomg ( ( 𝑋𝑤 ) ∈ V → ( ( 𝑋𝑧 ) ⊆ ( 𝑋𝑤 ) → ( 𝑋𝑧 ) ≼ ( 𝑋𝑤 ) ) )
35 31 33 34 sylc ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ 𝑧𝑋𝑤𝑧 ) → ( 𝑋𝑧 ) ≼ ( 𝑋𝑤 ) )
36 domsdomtr ( ( ( 𝑋𝑧 ) ≼ ( 𝑋𝑤 ) ∧ ( 𝑋𝑤 ) ≺ 𝑋 ) → ( 𝑋𝑧 ) ≺ 𝑋 )
37 36 ex ( ( 𝑋𝑧 ) ≼ ( 𝑋𝑤 ) → ( ( 𝑋𝑤 ) ≺ 𝑋 → ( 𝑋𝑧 ) ≺ 𝑋 ) )
38 35 37 syl ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ 𝑧𝑋𝑤𝑧 ) → ( ( 𝑋𝑤 ) ≺ 𝑋 → ( 𝑋𝑧 ) ≺ 𝑋 ) )
39 vex 𝑤 ∈ V
40 difeq2 ( 𝑦 = 𝑤 → ( 𝑋𝑦 ) = ( 𝑋𝑤 ) )
41 40 breq1d ( 𝑦 = 𝑤 → ( ( 𝑋𝑦 ) ≺ 𝑋 ↔ ( 𝑋𝑤 ) ≺ 𝑋 ) )
42 39 41 sbcie ( [ 𝑤 / 𝑦 ] ( 𝑋𝑦 ) ≺ 𝑋 ↔ ( 𝑋𝑤 ) ≺ 𝑋 )
43 vex 𝑧 ∈ V
44 difeq2 ( 𝑦 = 𝑧 → ( 𝑋𝑦 ) = ( 𝑋𝑧 ) )
45 44 breq1d ( 𝑦 = 𝑧 → ( ( 𝑋𝑦 ) ≺ 𝑋 ↔ ( 𝑋𝑧 ) ≺ 𝑋 ) )
46 43 45 sbcie ( [ 𝑧 / 𝑦 ] ( 𝑋𝑦 ) ≺ 𝑋 ↔ ( 𝑋𝑧 ) ≺ 𝑋 )
47 38 42 46 3imtr4g ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ 𝑧𝑋𝑤𝑧 ) → ( [ 𝑤 / 𝑦 ] ( 𝑋𝑦 ) ≺ 𝑋[ 𝑧 / 𝑦 ] ( 𝑋𝑦 ) ≺ 𝑋 ) )
48 infunsdom ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ ( ( 𝑋𝑧 ) ≺ 𝑋 ∧ ( 𝑋𝑤 ) ≺ 𝑋 ) ) → ( ( 𝑋𝑧 ) ∪ ( 𝑋𝑤 ) ) ≺ 𝑋 )
49 48 ex ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) → ( ( ( 𝑋𝑧 ) ≺ 𝑋 ∧ ( 𝑋𝑤 ) ≺ 𝑋 ) → ( ( 𝑋𝑧 ) ∪ ( 𝑋𝑤 ) ) ≺ 𝑋 ) )
50 difindi ( 𝑋 ∖ ( 𝑧𝑤 ) ) = ( ( 𝑋𝑧 ) ∪ ( 𝑋𝑤 ) )
51 50 breq1i ( ( 𝑋 ∖ ( 𝑧𝑤 ) ) ≺ 𝑋 ↔ ( ( 𝑋𝑧 ) ∪ ( 𝑋𝑤 ) ) ≺ 𝑋 )
52 49 51 syl6ibr ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) → ( ( ( 𝑋𝑧 ) ≺ 𝑋 ∧ ( 𝑋𝑤 ) ≺ 𝑋 ) → ( 𝑋 ∖ ( 𝑧𝑤 ) ) ≺ 𝑋 ) )
53 52 3ad2ant1 ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ 𝑧𝑋𝑤𝑋 ) → ( ( ( 𝑋𝑧 ) ≺ 𝑋 ∧ ( 𝑋𝑤 ) ≺ 𝑋 ) → ( 𝑋 ∖ ( 𝑧𝑤 ) ) ≺ 𝑋 ) )
54 46 42 anbi12i ( ( [ 𝑧 / 𝑦 ] ( 𝑋𝑦 ) ≺ 𝑋[ 𝑤 / 𝑦 ] ( 𝑋𝑦 ) ≺ 𝑋 ) ↔ ( ( 𝑋𝑧 ) ≺ 𝑋 ∧ ( 𝑋𝑤 ) ≺ 𝑋 ) )
55 43 inex1 ( 𝑧𝑤 ) ∈ V
56 difeq2 ( 𝑦 = ( 𝑧𝑤 ) → ( 𝑋𝑦 ) = ( 𝑋 ∖ ( 𝑧𝑤 ) ) )
57 56 breq1d ( 𝑦 = ( 𝑧𝑤 ) → ( ( 𝑋𝑦 ) ≺ 𝑋 ↔ ( 𝑋 ∖ ( 𝑧𝑤 ) ) ≺ 𝑋 ) )
58 55 57 sbcie ( [ ( 𝑧𝑤 ) / 𝑦 ] ( 𝑋𝑦 ) ≺ 𝑋 ↔ ( 𝑋 ∖ ( 𝑧𝑤 ) ) ≺ 𝑋 )
59 53 54 58 3imtr4g ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ 𝑧𝑋𝑤𝑋 ) → ( ( [ 𝑧 / 𝑦 ] ( 𝑋𝑦 ) ≺ 𝑋[ 𝑤 / 𝑦 ] ( 𝑋𝑦 ) ≺ 𝑋 ) → [ ( 𝑧𝑤 ) / 𝑦 ] ( 𝑋𝑦 ) ≺ 𝑋 ) )
60 7 8 20 29 47 59 isfild ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) → { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋𝑥 ) ≺ 𝑋 } ∈ ( Fil ‘ 𝑋 ) )