Step |
Hyp |
Ref |
Expression |
1 |
|
difeq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝑋 ∖ 𝑥 ) = ( 𝑋 ∖ 𝑦 ) ) |
2 |
1
|
breq1d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑋 ∖ 𝑥 ) ≺ 𝑋 ↔ ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 ) ) |
3 |
2
|
elrab |
⊢ ( 𝑦 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑥 ) ≺ 𝑋 } ↔ ( 𝑦 ∈ 𝒫 𝑋 ∧ ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 ) ) |
4 |
|
velpw |
⊢ ( 𝑦 ∈ 𝒫 𝑋 ↔ 𝑦 ⊆ 𝑋 ) |
5 |
4
|
anbi1i |
⊢ ( ( 𝑦 ∈ 𝒫 𝑋 ∧ ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 ) ↔ ( 𝑦 ⊆ 𝑋 ∧ ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 ) ) |
6 |
3 5
|
bitri |
⊢ ( 𝑦 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑥 ) ≺ 𝑋 } ↔ ( 𝑦 ⊆ 𝑋 ∧ ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 ) ) |
7 |
6
|
a1i |
⊢ ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) → ( 𝑦 ∈ { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑥 ) ≺ 𝑋 } ↔ ( 𝑦 ⊆ 𝑋 ∧ ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 ) ) ) |
8 |
|
simpl |
⊢ ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) → 𝑋 ∈ dom card ) |
9 |
|
difid |
⊢ ( 𝑋 ∖ 𝑋 ) = ∅ |
10 |
|
infn0 |
⊢ ( ω ≼ 𝑋 → 𝑋 ≠ ∅ ) |
11 |
10
|
adantl |
⊢ ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) → 𝑋 ≠ ∅ ) |
12 |
|
0sdomg |
⊢ ( 𝑋 ∈ dom card → ( ∅ ≺ 𝑋 ↔ 𝑋 ≠ ∅ ) ) |
13 |
12
|
adantr |
⊢ ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) → ( ∅ ≺ 𝑋 ↔ 𝑋 ≠ ∅ ) ) |
14 |
11 13
|
mpbird |
⊢ ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) → ∅ ≺ 𝑋 ) |
15 |
9 14
|
eqbrtrid |
⊢ ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) → ( 𝑋 ∖ 𝑋 ) ≺ 𝑋 ) |
16 |
|
difeq2 |
⊢ ( 𝑦 = 𝑋 → ( 𝑋 ∖ 𝑦 ) = ( 𝑋 ∖ 𝑋 ) ) |
17 |
16
|
breq1d |
⊢ ( 𝑦 = 𝑋 → ( ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 ↔ ( 𝑋 ∖ 𝑋 ) ≺ 𝑋 ) ) |
18 |
17
|
sbcieg |
⊢ ( 𝑋 ∈ dom card → ( [ 𝑋 / 𝑦 ] ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 ↔ ( 𝑋 ∖ 𝑋 ) ≺ 𝑋 ) ) |
19 |
18
|
adantr |
⊢ ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) → ( [ 𝑋 / 𝑦 ] ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 ↔ ( 𝑋 ∖ 𝑋 ) ≺ 𝑋 ) ) |
20 |
15 19
|
mpbird |
⊢ ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) → [ 𝑋 / 𝑦 ] ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 ) |
21 |
|
sdomirr |
⊢ ¬ 𝑋 ≺ 𝑋 |
22 |
|
0ex |
⊢ ∅ ∈ V |
23 |
|
difeq2 |
⊢ ( 𝑦 = ∅ → ( 𝑋 ∖ 𝑦 ) = ( 𝑋 ∖ ∅ ) ) |
24 |
|
dif0 |
⊢ ( 𝑋 ∖ ∅ ) = 𝑋 |
25 |
23 24
|
eqtrdi |
⊢ ( 𝑦 = ∅ → ( 𝑋 ∖ 𝑦 ) = 𝑋 ) |
26 |
25
|
breq1d |
⊢ ( 𝑦 = ∅ → ( ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 ↔ 𝑋 ≺ 𝑋 ) ) |
27 |
22 26
|
sbcie |
⊢ ( [ ∅ / 𝑦 ] ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 ↔ 𝑋 ≺ 𝑋 ) |
28 |
27
|
a1i |
⊢ ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) → ( [ ∅ / 𝑦 ] ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 ↔ 𝑋 ≺ 𝑋 ) ) |
29 |
21 28
|
mtbiri |
⊢ ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) → ¬ [ ∅ / 𝑦 ] ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 ) |
30 |
|
simp1l |
⊢ ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ 𝑧 ⊆ 𝑋 ∧ 𝑤 ⊆ 𝑧 ) → 𝑋 ∈ dom card ) |
31 |
30
|
difexd |
⊢ ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ 𝑧 ⊆ 𝑋 ∧ 𝑤 ⊆ 𝑧 ) → ( 𝑋 ∖ 𝑤 ) ∈ V ) |
32 |
|
sscon |
⊢ ( 𝑤 ⊆ 𝑧 → ( 𝑋 ∖ 𝑧 ) ⊆ ( 𝑋 ∖ 𝑤 ) ) |
33 |
32
|
3ad2ant3 |
⊢ ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ 𝑧 ⊆ 𝑋 ∧ 𝑤 ⊆ 𝑧 ) → ( 𝑋 ∖ 𝑧 ) ⊆ ( 𝑋 ∖ 𝑤 ) ) |
34 |
|
ssdomg |
⊢ ( ( 𝑋 ∖ 𝑤 ) ∈ V → ( ( 𝑋 ∖ 𝑧 ) ⊆ ( 𝑋 ∖ 𝑤 ) → ( 𝑋 ∖ 𝑧 ) ≼ ( 𝑋 ∖ 𝑤 ) ) ) |
35 |
31 33 34
|
sylc |
⊢ ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ 𝑧 ⊆ 𝑋 ∧ 𝑤 ⊆ 𝑧 ) → ( 𝑋 ∖ 𝑧 ) ≼ ( 𝑋 ∖ 𝑤 ) ) |
36 |
|
domsdomtr |
⊢ ( ( ( 𝑋 ∖ 𝑧 ) ≼ ( 𝑋 ∖ 𝑤 ) ∧ ( 𝑋 ∖ 𝑤 ) ≺ 𝑋 ) → ( 𝑋 ∖ 𝑧 ) ≺ 𝑋 ) |
37 |
36
|
ex |
⊢ ( ( 𝑋 ∖ 𝑧 ) ≼ ( 𝑋 ∖ 𝑤 ) → ( ( 𝑋 ∖ 𝑤 ) ≺ 𝑋 → ( 𝑋 ∖ 𝑧 ) ≺ 𝑋 ) ) |
38 |
35 37
|
syl |
⊢ ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ 𝑧 ⊆ 𝑋 ∧ 𝑤 ⊆ 𝑧 ) → ( ( 𝑋 ∖ 𝑤 ) ≺ 𝑋 → ( 𝑋 ∖ 𝑧 ) ≺ 𝑋 ) ) |
39 |
|
vex |
⊢ 𝑤 ∈ V |
40 |
|
difeq2 |
⊢ ( 𝑦 = 𝑤 → ( 𝑋 ∖ 𝑦 ) = ( 𝑋 ∖ 𝑤 ) ) |
41 |
40
|
breq1d |
⊢ ( 𝑦 = 𝑤 → ( ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 ↔ ( 𝑋 ∖ 𝑤 ) ≺ 𝑋 ) ) |
42 |
39 41
|
sbcie |
⊢ ( [ 𝑤 / 𝑦 ] ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 ↔ ( 𝑋 ∖ 𝑤 ) ≺ 𝑋 ) |
43 |
|
vex |
⊢ 𝑧 ∈ V |
44 |
|
difeq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝑋 ∖ 𝑦 ) = ( 𝑋 ∖ 𝑧 ) ) |
45 |
44
|
breq1d |
⊢ ( 𝑦 = 𝑧 → ( ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 ↔ ( 𝑋 ∖ 𝑧 ) ≺ 𝑋 ) ) |
46 |
43 45
|
sbcie |
⊢ ( [ 𝑧 / 𝑦 ] ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 ↔ ( 𝑋 ∖ 𝑧 ) ≺ 𝑋 ) |
47 |
38 42 46
|
3imtr4g |
⊢ ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ 𝑧 ⊆ 𝑋 ∧ 𝑤 ⊆ 𝑧 ) → ( [ 𝑤 / 𝑦 ] ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 → [ 𝑧 / 𝑦 ] ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 ) ) |
48 |
|
infunsdom |
⊢ ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ ( ( 𝑋 ∖ 𝑧 ) ≺ 𝑋 ∧ ( 𝑋 ∖ 𝑤 ) ≺ 𝑋 ) ) → ( ( 𝑋 ∖ 𝑧 ) ∪ ( 𝑋 ∖ 𝑤 ) ) ≺ 𝑋 ) |
49 |
48
|
ex |
⊢ ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) → ( ( ( 𝑋 ∖ 𝑧 ) ≺ 𝑋 ∧ ( 𝑋 ∖ 𝑤 ) ≺ 𝑋 ) → ( ( 𝑋 ∖ 𝑧 ) ∪ ( 𝑋 ∖ 𝑤 ) ) ≺ 𝑋 ) ) |
50 |
|
difindi |
⊢ ( 𝑋 ∖ ( 𝑧 ∩ 𝑤 ) ) = ( ( 𝑋 ∖ 𝑧 ) ∪ ( 𝑋 ∖ 𝑤 ) ) |
51 |
50
|
breq1i |
⊢ ( ( 𝑋 ∖ ( 𝑧 ∩ 𝑤 ) ) ≺ 𝑋 ↔ ( ( 𝑋 ∖ 𝑧 ) ∪ ( 𝑋 ∖ 𝑤 ) ) ≺ 𝑋 ) |
52 |
49 51
|
syl6ibr |
⊢ ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) → ( ( ( 𝑋 ∖ 𝑧 ) ≺ 𝑋 ∧ ( 𝑋 ∖ 𝑤 ) ≺ 𝑋 ) → ( 𝑋 ∖ ( 𝑧 ∩ 𝑤 ) ) ≺ 𝑋 ) ) |
53 |
52
|
3ad2ant1 |
⊢ ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ 𝑧 ⊆ 𝑋 ∧ 𝑤 ⊆ 𝑋 ) → ( ( ( 𝑋 ∖ 𝑧 ) ≺ 𝑋 ∧ ( 𝑋 ∖ 𝑤 ) ≺ 𝑋 ) → ( 𝑋 ∖ ( 𝑧 ∩ 𝑤 ) ) ≺ 𝑋 ) ) |
54 |
46 42
|
anbi12i |
⊢ ( ( [ 𝑧 / 𝑦 ] ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 ∧ [ 𝑤 / 𝑦 ] ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 ) ↔ ( ( 𝑋 ∖ 𝑧 ) ≺ 𝑋 ∧ ( 𝑋 ∖ 𝑤 ) ≺ 𝑋 ) ) |
55 |
43
|
inex1 |
⊢ ( 𝑧 ∩ 𝑤 ) ∈ V |
56 |
|
difeq2 |
⊢ ( 𝑦 = ( 𝑧 ∩ 𝑤 ) → ( 𝑋 ∖ 𝑦 ) = ( 𝑋 ∖ ( 𝑧 ∩ 𝑤 ) ) ) |
57 |
56
|
breq1d |
⊢ ( 𝑦 = ( 𝑧 ∩ 𝑤 ) → ( ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 ↔ ( 𝑋 ∖ ( 𝑧 ∩ 𝑤 ) ) ≺ 𝑋 ) ) |
58 |
55 57
|
sbcie |
⊢ ( [ ( 𝑧 ∩ 𝑤 ) / 𝑦 ] ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 ↔ ( 𝑋 ∖ ( 𝑧 ∩ 𝑤 ) ) ≺ 𝑋 ) |
59 |
53 54 58
|
3imtr4g |
⊢ ( ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) ∧ 𝑧 ⊆ 𝑋 ∧ 𝑤 ⊆ 𝑋 ) → ( ( [ 𝑧 / 𝑦 ] ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 ∧ [ 𝑤 / 𝑦 ] ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 ) → [ ( 𝑧 ∩ 𝑤 ) / 𝑦 ] ( 𝑋 ∖ 𝑦 ) ≺ 𝑋 ) ) |
60 |
7 8 20 29 47 59
|
isfild |
⊢ ( ( 𝑋 ∈ dom card ∧ ω ≼ 𝑋 ) → { 𝑥 ∈ 𝒫 𝑋 ∣ ( 𝑋 ∖ 𝑥 ) ≺ 𝑋 } ∈ ( Fil ‘ 𝑋 ) ) |