Step |
Hyp |
Ref |
Expression |
1 |
|
ffn |
⊢ ( 𝐹 : 𝐴 ⟶ 𝐵 → 𝐹 Fn 𝐴 ) |
2 |
1
|
3ad2ant3 |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → 𝐹 Fn 𝐴 ) |
3 |
|
cshwfn |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ) → ( 𝑊 cyclShift 𝑁 ) Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
4 |
3
|
3adant3 |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝑊 cyclShift 𝑁 ) Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
5 |
|
cshwrn |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ) → ran ( 𝑊 cyclShift 𝑁 ) ⊆ 𝐴 ) |
6 |
5
|
3adant3 |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ran ( 𝑊 cyclShift 𝑁 ) ⊆ 𝐴 ) |
7 |
|
fnco |
⊢ ( ( 𝐹 Fn 𝐴 ∧ ( 𝑊 cyclShift 𝑁 ) Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∧ ran ( 𝑊 cyclShift 𝑁 ) ⊆ 𝐴 ) → ( 𝐹 ∘ ( 𝑊 cyclShift 𝑁 ) ) Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
8 |
2 4 6 7
|
syl3anc |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝐹 ∘ ( 𝑊 cyclShift 𝑁 ) ) Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
9 |
|
wrdco |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝐹 ∘ 𝑊 ) ∈ Word 𝐵 ) |
10 |
9
|
3adant2 |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝐹 ∘ 𝑊 ) ∈ Word 𝐵 ) |
11 |
|
simp2 |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → 𝑁 ∈ ℤ ) |
12 |
|
cshwfn |
⊢ ( ( ( 𝐹 ∘ 𝑊 ) ∈ Word 𝐵 ∧ 𝑁 ∈ ℤ ) → ( ( 𝐹 ∘ 𝑊 ) cyclShift 𝑁 ) Fn ( 0 ..^ ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) ) |
13 |
10 11 12
|
syl2anc |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( ( 𝐹 ∘ 𝑊 ) cyclShift 𝑁 ) Fn ( 0 ..^ ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) ) |
14 |
|
lenco |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) = ( ♯ ‘ 𝑊 ) ) |
15 |
14
|
3adant2 |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) = ( ♯ ‘ 𝑊 ) ) |
16 |
15
|
oveq2d |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 0 ..^ ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) = ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
17 |
16
|
fneq2d |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( ( ( 𝐹 ∘ 𝑊 ) cyclShift 𝑁 ) Fn ( 0 ..^ ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) ↔ ( ( 𝐹 ∘ 𝑊 ) cyclShift 𝑁 ) Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
18 |
13 17
|
mpbid |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( ( 𝐹 ∘ 𝑊 ) cyclShift 𝑁 ) Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
19 |
15
|
adantr |
⊢ ( ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) = ( ♯ ‘ 𝑊 ) ) |
20 |
19
|
oveq2d |
⊢ ( ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) = ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) ) |
21 |
20
|
fveq2d |
⊢ ( ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 ‘ ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) ) = ( 𝑊 ‘ ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
22 |
21
|
fveq2d |
⊢ ( ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝐹 ‘ ( 𝑊 ‘ ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) ) ) = ( 𝐹 ‘ ( 𝑊 ‘ ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) |
23 |
|
wrdfn |
⊢ ( 𝑊 ∈ Word 𝐴 → 𝑊 Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
24 |
23
|
3ad2ant1 |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → 𝑊 Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
25 |
24
|
adantr |
⊢ ( ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝑊 Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
26 |
|
elfzoelz |
⊢ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → 𝑖 ∈ ℤ ) |
27 |
|
zaddcl |
⊢ ( ( 𝑖 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑖 + 𝑁 ) ∈ ℤ ) |
28 |
26 11 27
|
syl2anr |
⊢ ( ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑖 + 𝑁 ) ∈ ℤ ) |
29 |
|
elfzo0 |
⊢ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↔ ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑖 < ( ♯ ‘ 𝑊 ) ) ) |
30 |
29
|
simp2bi |
⊢ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ♯ ‘ 𝑊 ) ∈ ℕ ) |
31 |
30
|
adantl |
⊢ ( ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ♯ ‘ 𝑊 ) ∈ ℕ ) |
32 |
|
zmodfzo |
⊢ ( ( ( 𝑖 + 𝑁 ) ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) → ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
33 |
28 31 32
|
syl2anc |
⊢ ( ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
34 |
15
|
oveq2d |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) = ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) ) |
35 |
34
|
eleq1d |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↔ ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
36 |
35
|
adantr |
⊢ ( ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↔ ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
37 |
33 36
|
mpbird |
⊢ ( ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
38 |
|
fvco2 |
⊢ ( ( 𝑊 Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∧ ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝐹 ∘ 𝑊 ) ‘ ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) ) = ( 𝐹 ‘ ( 𝑊 ‘ ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) ) ) ) |
39 |
25 37 38
|
syl2anc |
⊢ ( ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝐹 ∘ 𝑊 ) ‘ ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) ) = ( 𝐹 ‘ ( 𝑊 ‘ ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) ) ) ) |
40 |
|
simpl1 |
⊢ ( ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝑊 ∈ Word 𝐴 ) |
41 |
11
|
adantr |
⊢ ( ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝑁 ∈ ℤ ) |
42 |
|
simpr |
⊢ ( ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
43 |
|
cshwidxmod |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 cyclShift 𝑁 ) ‘ 𝑖 ) = ( 𝑊 ‘ ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
44 |
43
|
fveq2d |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝐹 ‘ ( ( 𝑊 cyclShift 𝑁 ) ‘ 𝑖 ) ) = ( 𝐹 ‘ ( 𝑊 ‘ ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) |
45 |
40 41 42 44
|
syl3anc |
⊢ ( ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝐹 ‘ ( ( 𝑊 cyclShift 𝑁 ) ‘ 𝑖 ) ) = ( 𝐹 ‘ ( 𝑊 ‘ ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) |
46 |
22 39 45
|
3eqtr4rd |
⊢ ( ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝐹 ‘ ( ( 𝑊 cyclShift 𝑁 ) ‘ 𝑖 ) ) = ( ( 𝐹 ∘ 𝑊 ) ‘ ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) ) ) |
47 |
|
fvco2 |
⊢ ( ( ( 𝑊 cyclShift 𝑁 ) Fn ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝐹 ∘ ( 𝑊 cyclShift 𝑁 ) ) ‘ 𝑖 ) = ( 𝐹 ‘ ( ( 𝑊 cyclShift 𝑁 ) ‘ 𝑖 ) ) ) |
48 |
4 47
|
sylan |
⊢ ( ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝐹 ∘ ( 𝑊 cyclShift 𝑁 ) ) ‘ 𝑖 ) = ( 𝐹 ‘ ( ( 𝑊 cyclShift 𝑁 ) ‘ 𝑖 ) ) ) |
49 |
10
|
adantr |
⊢ ( ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝐹 ∘ 𝑊 ) ∈ Word 𝐵 ) |
50 |
15
|
eqcomd |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( ♯ ‘ 𝑊 ) = ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) |
51 |
50
|
oveq2d |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 0 ..^ ( ♯ ‘ 𝑊 ) ) = ( 0 ..^ ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) ) |
52 |
51
|
eleq2d |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↔ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) ) ) |
53 |
52
|
biimpa |
⊢ ( ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) ) |
54 |
|
cshwidxmod |
⊢ ( ( ( 𝐹 ∘ 𝑊 ) ∈ Word 𝐵 ∧ 𝑁 ∈ ℤ ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) ) → ( ( ( 𝐹 ∘ 𝑊 ) cyclShift 𝑁 ) ‘ 𝑖 ) = ( ( 𝐹 ∘ 𝑊 ) ‘ ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) ) ) |
55 |
49 41 53 54
|
syl3anc |
⊢ ( ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( ( 𝐹 ∘ 𝑊 ) cyclShift 𝑁 ) ‘ 𝑖 ) = ( ( 𝐹 ∘ 𝑊 ) ‘ ( ( 𝑖 + 𝑁 ) mod ( ♯ ‘ ( 𝐹 ∘ 𝑊 ) ) ) ) ) |
56 |
46 48 55
|
3eqtr4d |
⊢ ( ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝐹 ∘ ( 𝑊 cyclShift 𝑁 ) ) ‘ 𝑖 ) = ( ( ( 𝐹 ∘ 𝑊 ) cyclShift 𝑁 ) ‘ 𝑖 ) ) |
57 |
8 18 56
|
eqfnfvd |
⊢ ( ( 𝑊 ∈ Word 𝐴 ∧ 𝑁 ∈ ℤ ∧ 𝐹 : 𝐴 ⟶ 𝐵 ) → ( 𝐹 ∘ ( 𝑊 cyclShift 𝑁 ) ) = ( ( 𝐹 ∘ 𝑊 ) cyclShift 𝑁 ) ) |