| Step | Hyp | Ref | Expression | 
						
							| 1 |  | f1f | ⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ 𝐴  →  𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝐴 ) | 
						
							| 2 |  | iswrdi | ⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝐴  →  𝐹  ∈  Word  𝐴 ) | 
						
							| 3 | 1 2 | syl | ⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ 𝐴  →  𝐹  ∈  Word  𝐴 ) | 
						
							| 4 |  | cshwf | ⊢ ( ( 𝐹  ∈  Word  𝐴  ∧  𝑆  ∈  ℤ )  →  ( 𝐹  cyclShift  𝑆 ) : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝐴 ) | 
						
							| 5 | 4 | 3adant1 | ⊢ ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ 𝐴  ∧  𝐹  ∈  Word  𝐴  ∧  𝑆  ∈  ℤ )  →  ( 𝐹  cyclShift  𝑆 ) : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝐴 ) | 
						
							| 6 | 5 | adantr | ⊢ ( ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ 𝐴  ∧  𝐹  ∈  Word  𝐴  ∧  𝑆  ∈  ℤ )  ∧  𝐺  =  ( 𝐹  cyclShift  𝑆 ) )  →  ( 𝐹  cyclShift  𝑆 ) : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝐴 ) | 
						
							| 7 |  | feq1 | ⊢ ( 𝐺  =  ( 𝐹  cyclShift  𝑆 )  →  ( 𝐺 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝐴  ↔  ( 𝐹  cyclShift  𝑆 ) : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝐴 ) ) | 
						
							| 8 | 7 | adantl | ⊢ ( ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ 𝐴  ∧  𝐹  ∈  Word  𝐴  ∧  𝑆  ∈  ℤ )  ∧  𝐺  =  ( 𝐹  cyclShift  𝑆 ) )  →  ( 𝐺 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝐴  ↔  ( 𝐹  cyclShift  𝑆 ) : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝐴 ) ) | 
						
							| 9 | 6 8 | mpbird | ⊢ ( ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ 𝐴  ∧  𝐹  ∈  Word  𝐴  ∧  𝑆  ∈  ℤ )  ∧  𝐺  =  ( 𝐹  cyclShift  𝑆 ) )  →  𝐺 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝐴 ) | 
						
							| 10 |  | dff13 | ⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ 𝐴  ↔  ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝐴  ∧  ∀ 𝑥  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 ) ) ) | 
						
							| 11 |  | fveq1 | ⊢ ( 𝐺  =  ( 𝐹  cyclShift  𝑆 )  →  ( 𝐺 ‘ 𝑖 )  =  ( ( 𝐹  cyclShift  𝑆 ) ‘ 𝑖 ) ) | 
						
							| 12 | 11 | 3ad2ant1 | ⊢ ( ( 𝐺  =  ( 𝐹  cyclShift  𝑆 )  ∧  𝐹  ∈  Word  𝐴  ∧  𝑆  ∈  ℤ )  →  ( 𝐺 ‘ 𝑖 )  =  ( ( 𝐹  cyclShift  𝑆 ) ‘ 𝑖 ) ) | 
						
							| 13 | 12 | adantr | ⊢ ( ( ( 𝐺  =  ( 𝐹  cyclShift  𝑆 )  ∧  𝐹  ∈  Word  𝐴  ∧  𝑆  ∈  ℤ )  ∧  ( 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( 𝐺 ‘ 𝑖 )  =  ( ( 𝐹  cyclShift  𝑆 ) ‘ 𝑖 ) ) | 
						
							| 14 |  | cshwidxmod | ⊢ ( ( 𝐹  ∈  Word  𝐴  ∧  𝑆  ∈  ℤ  ∧  𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( ( 𝐹  cyclShift  𝑆 ) ‘ 𝑖 )  =  ( 𝐹 ‘ ( ( 𝑖  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) ) ) | 
						
							| 15 | 14 | 3expia | ⊢ ( ( 𝐹  ∈  Word  𝐴  ∧  𝑆  ∈  ℤ )  →  ( 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ( ( 𝐹  cyclShift  𝑆 ) ‘ 𝑖 )  =  ( 𝐹 ‘ ( ( 𝑖  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) ) ) ) | 
						
							| 16 | 15 | 3adant1 | ⊢ ( ( 𝐺  =  ( 𝐹  cyclShift  𝑆 )  ∧  𝐹  ∈  Word  𝐴  ∧  𝑆  ∈  ℤ )  →  ( 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ( ( 𝐹  cyclShift  𝑆 ) ‘ 𝑖 )  =  ( 𝐹 ‘ ( ( 𝑖  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) ) ) ) | 
						
							| 17 | 16 | com12 | ⊢ ( 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ( ( 𝐺  =  ( 𝐹  cyclShift  𝑆 )  ∧  𝐹  ∈  Word  𝐴  ∧  𝑆  ∈  ℤ )  →  ( ( 𝐹  cyclShift  𝑆 ) ‘ 𝑖 )  =  ( 𝐹 ‘ ( ( 𝑖  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) ) ) ) | 
						
							| 18 | 17 | adantr | ⊢ ( ( 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( ( 𝐺  =  ( 𝐹  cyclShift  𝑆 )  ∧  𝐹  ∈  Word  𝐴  ∧  𝑆  ∈  ℤ )  →  ( ( 𝐹  cyclShift  𝑆 ) ‘ 𝑖 )  =  ( 𝐹 ‘ ( ( 𝑖  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) ) ) ) | 
						
							| 19 | 18 | impcom | ⊢ ( ( ( 𝐺  =  ( 𝐹  cyclShift  𝑆 )  ∧  𝐹  ∈  Word  𝐴  ∧  𝑆  ∈  ℤ )  ∧  ( 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( ( 𝐹  cyclShift  𝑆 ) ‘ 𝑖 )  =  ( 𝐹 ‘ ( ( 𝑖  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) ) ) | 
						
							| 20 | 13 19 | eqtrd | ⊢ ( ( ( 𝐺  =  ( 𝐹  cyclShift  𝑆 )  ∧  𝐹  ∈  Word  𝐴  ∧  𝑆  ∈  ℤ )  ∧  ( 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( 𝐺 ‘ 𝑖 )  =  ( 𝐹 ‘ ( ( 𝑖  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) ) ) | 
						
							| 21 |  | fveq1 | ⊢ ( 𝐺  =  ( 𝐹  cyclShift  𝑆 )  →  ( 𝐺 ‘ 𝑗 )  =  ( ( 𝐹  cyclShift  𝑆 ) ‘ 𝑗 ) ) | 
						
							| 22 | 21 | 3ad2ant1 | ⊢ ( ( 𝐺  =  ( 𝐹  cyclShift  𝑆 )  ∧  𝐹  ∈  Word  𝐴  ∧  𝑆  ∈  ℤ )  →  ( 𝐺 ‘ 𝑗 )  =  ( ( 𝐹  cyclShift  𝑆 ) ‘ 𝑗 ) ) | 
						
							| 23 | 22 | adantr | ⊢ ( ( ( 𝐺  =  ( 𝐹  cyclShift  𝑆 )  ∧  𝐹  ∈  Word  𝐴  ∧  𝑆  ∈  ℤ )  ∧  ( 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( 𝐺 ‘ 𝑗 )  =  ( ( 𝐹  cyclShift  𝑆 ) ‘ 𝑗 ) ) | 
						
							| 24 |  | cshwidxmod | ⊢ ( ( 𝐹  ∈  Word  𝐴  ∧  𝑆  ∈  ℤ  ∧  𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( ( 𝐹  cyclShift  𝑆 ) ‘ 𝑗 )  =  ( 𝐹 ‘ ( ( 𝑗  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) ) ) | 
						
							| 25 | 24 | 3expia | ⊢ ( ( 𝐹  ∈  Word  𝐴  ∧  𝑆  ∈  ℤ )  →  ( 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ( ( 𝐹  cyclShift  𝑆 ) ‘ 𝑗 )  =  ( 𝐹 ‘ ( ( 𝑗  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) ) ) ) | 
						
							| 26 | 25 | 3adant1 | ⊢ ( ( 𝐺  =  ( 𝐹  cyclShift  𝑆 )  ∧  𝐹  ∈  Word  𝐴  ∧  𝑆  ∈  ℤ )  →  ( 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ( ( 𝐹  cyclShift  𝑆 ) ‘ 𝑗 )  =  ( 𝐹 ‘ ( ( 𝑗  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) ) ) ) | 
						
							| 27 | 26 | adantld | ⊢ ( ( 𝐺  =  ( 𝐹  cyclShift  𝑆 )  ∧  𝐹  ∈  Word  𝐴  ∧  𝑆  ∈  ℤ )  →  ( ( 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( ( 𝐹  cyclShift  𝑆 ) ‘ 𝑗 )  =  ( 𝐹 ‘ ( ( 𝑗  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) ) ) ) | 
						
							| 28 | 27 | imp | ⊢ ( ( ( 𝐺  =  ( 𝐹  cyclShift  𝑆 )  ∧  𝐹  ∈  Word  𝐴  ∧  𝑆  ∈  ℤ )  ∧  ( 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( ( 𝐹  cyclShift  𝑆 ) ‘ 𝑗 )  =  ( 𝐹 ‘ ( ( 𝑗  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) ) ) | 
						
							| 29 | 23 28 | eqtrd | ⊢ ( ( ( 𝐺  =  ( 𝐹  cyclShift  𝑆 )  ∧  𝐹  ∈  Word  𝐴  ∧  𝑆  ∈  ℤ )  ∧  ( 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( 𝐺 ‘ 𝑗 )  =  ( 𝐹 ‘ ( ( 𝑗  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) ) ) | 
						
							| 30 | 20 29 | eqeq12d | ⊢ ( ( ( 𝐺  =  ( 𝐹  cyclShift  𝑆 )  ∧  𝐹  ∈  Word  𝐴  ∧  𝑆  ∈  ℤ )  ∧  ( 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( ( 𝐺 ‘ 𝑖 )  =  ( 𝐺 ‘ 𝑗 )  ↔  ( 𝐹 ‘ ( ( 𝑖  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) )  =  ( 𝐹 ‘ ( ( 𝑗  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) ) ) ) | 
						
							| 31 | 30 | adantlr | ⊢ ( ( ( ( 𝐺  =  ( 𝐹  cyclShift  𝑆 )  ∧  𝐹  ∈  Word  𝐴  ∧  𝑆  ∈  ℤ )  ∧  ∀ 𝑥  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  ( 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( ( 𝐺 ‘ 𝑖 )  =  ( 𝐺 ‘ 𝑗 )  ↔  ( 𝐹 ‘ ( ( 𝑖  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) )  =  ( 𝐹 ‘ ( ( 𝑗  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) ) ) ) | 
						
							| 32 |  | elfzo0 | ⊢ ( 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ↔  ( 𝑖  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ  ∧  𝑖  <  ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 33 |  | nn0z | ⊢ ( 𝑖  ∈  ℕ0  →  𝑖  ∈  ℤ ) | 
						
							| 34 | 33 | adantr | ⊢ ( ( 𝑖  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ )  →  𝑖  ∈  ℤ ) | 
						
							| 35 | 34 | adantl | ⊢ ( ( 𝑆  ∈  ℤ  ∧  ( 𝑖  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ ) )  →  𝑖  ∈  ℤ ) | 
						
							| 36 |  | simpl | ⊢ ( ( 𝑆  ∈  ℤ  ∧  ( 𝑖  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ ) )  →  𝑆  ∈  ℤ ) | 
						
							| 37 | 35 36 | zaddcld | ⊢ ( ( 𝑆  ∈  ℤ  ∧  ( 𝑖  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ ) )  →  ( 𝑖  +  𝑆 )  ∈  ℤ ) | 
						
							| 38 |  | simpr | ⊢ ( ( 𝑖  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ )  →  ( ♯ ‘ 𝐹 )  ∈  ℕ ) | 
						
							| 39 | 38 | adantl | ⊢ ( ( 𝑆  ∈  ℤ  ∧  ( 𝑖  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ ) )  →  ( ♯ ‘ 𝐹 )  ∈  ℕ ) | 
						
							| 40 | 37 39 | jca | ⊢ ( ( 𝑆  ∈  ℤ  ∧  ( 𝑖  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ ) )  →  ( ( 𝑖  +  𝑆 )  ∈  ℤ  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ ) ) | 
						
							| 41 | 40 | ex | ⊢ ( 𝑆  ∈  ℤ  →  ( ( 𝑖  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ )  →  ( ( 𝑖  +  𝑆 )  ∈  ℤ  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ ) ) ) | 
						
							| 42 | 41 | 3ad2ant3 | ⊢ ( ( 𝐺  =  ( 𝐹  cyclShift  𝑆 )  ∧  𝐹  ∈  Word  𝐴  ∧  𝑆  ∈  ℤ )  →  ( ( 𝑖  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ )  →  ( ( 𝑖  +  𝑆 )  ∈  ℤ  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ ) ) ) | 
						
							| 43 | 42 | com12 | ⊢ ( ( 𝑖  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ )  →  ( ( 𝐺  =  ( 𝐹  cyclShift  𝑆 )  ∧  𝐹  ∈  Word  𝐴  ∧  𝑆  ∈  ℤ )  →  ( ( 𝑖  +  𝑆 )  ∈  ℤ  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ ) ) ) | 
						
							| 44 | 43 | 3adant3 | ⊢ ( ( 𝑖  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ  ∧  𝑖  <  ( ♯ ‘ 𝐹 ) )  →  ( ( 𝐺  =  ( 𝐹  cyclShift  𝑆 )  ∧  𝐹  ∈  Word  𝐴  ∧  𝑆  ∈  ℤ )  →  ( ( 𝑖  +  𝑆 )  ∈  ℤ  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ ) ) ) | 
						
							| 45 | 32 44 | sylbi | ⊢ ( 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ( ( 𝐺  =  ( 𝐹  cyclShift  𝑆 )  ∧  𝐹  ∈  Word  𝐴  ∧  𝑆  ∈  ℤ )  →  ( ( 𝑖  +  𝑆 )  ∈  ℤ  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ ) ) ) | 
						
							| 46 | 45 | adantr | ⊢ ( ( 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( ( 𝐺  =  ( 𝐹  cyclShift  𝑆 )  ∧  𝐹  ∈  Word  𝐴  ∧  𝑆  ∈  ℤ )  →  ( ( 𝑖  +  𝑆 )  ∈  ℤ  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ ) ) ) | 
						
							| 47 | 46 | impcom | ⊢ ( ( ( 𝐺  =  ( 𝐹  cyclShift  𝑆 )  ∧  𝐹  ∈  Word  𝐴  ∧  𝑆  ∈  ℤ )  ∧  ( 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( ( 𝑖  +  𝑆 )  ∈  ℤ  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ ) ) | 
						
							| 48 |  | zmodfzo | ⊢ ( ( ( 𝑖  +  𝑆 )  ∈  ℤ  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ )  →  ( ( 𝑖  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) )  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 49 | 47 48 | syl | ⊢ ( ( ( 𝐺  =  ( 𝐹  cyclShift  𝑆 )  ∧  𝐹  ∈  Word  𝐴  ∧  𝑆  ∈  ℤ )  ∧  ( 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( ( 𝑖  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) )  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 50 |  | elfzo0 | ⊢ ( 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ↔  ( 𝑗  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ  ∧  𝑗  <  ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 51 |  | nn0z | ⊢ ( 𝑗  ∈  ℕ0  →  𝑗  ∈  ℤ ) | 
						
							| 52 | 51 | adantr | ⊢ ( ( 𝑗  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ )  →  𝑗  ∈  ℤ ) | 
						
							| 53 | 52 | adantl | ⊢ ( ( 𝑆  ∈  ℤ  ∧  ( 𝑗  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ ) )  →  𝑗  ∈  ℤ ) | 
						
							| 54 |  | simpl | ⊢ ( ( 𝑆  ∈  ℤ  ∧  ( 𝑗  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ ) )  →  𝑆  ∈  ℤ ) | 
						
							| 55 | 53 54 | zaddcld | ⊢ ( ( 𝑆  ∈  ℤ  ∧  ( 𝑗  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ ) )  →  ( 𝑗  +  𝑆 )  ∈  ℤ ) | 
						
							| 56 |  | simpr | ⊢ ( ( 𝑗  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ )  →  ( ♯ ‘ 𝐹 )  ∈  ℕ ) | 
						
							| 57 | 56 | adantl | ⊢ ( ( 𝑆  ∈  ℤ  ∧  ( 𝑗  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ ) )  →  ( ♯ ‘ 𝐹 )  ∈  ℕ ) | 
						
							| 58 | 55 57 | jca | ⊢ ( ( 𝑆  ∈  ℤ  ∧  ( 𝑗  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ ) )  →  ( ( 𝑗  +  𝑆 )  ∈  ℤ  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ ) ) | 
						
							| 59 | 58 | expcom | ⊢ ( ( 𝑗  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ )  →  ( 𝑆  ∈  ℤ  →  ( ( 𝑗  +  𝑆 )  ∈  ℤ  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ ) ) ) | 
						
							| 60 | 59 | 3adant3 | ⊢ ( ( 𝑗  ∈  ℕ0  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ  ∧  𝑗  <  ( ♯ ‘ 𝐹 ) )  →  ( 𝑆  ∈  ℤ  →  ( ( 𝑗  +  𝑆 )  ∈  ℤ  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ ) ) ) | 
						
							| 61 | 50 60 | sylbi | ⊢ ( 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ( 𝑆  ∈  ℤ  →  ( ( 𝑗  +  𝑆 )  ∈  ℤ  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ ) ) ) | 
						
							| 62 | 61 | com12 | ⊢ ( 𝑆  ∈  ℤ  →  ( 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ( ( 𝑗  +  𝑆 )  ∈  ℤ  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ ) ) ) | 
						
							| 63 | 62 | 3ad2ant3 | ⊢ ( ( 𝐺  =  ( 𝐹  cyclShift  𝑆 )  ∧  𝐹  ∈  Word  𝐴  ∧  𝑆  ∈  ℤ )  →  ( 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  →  ( ( 𝑗  +  𝑆 )  ∈  ℤ  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ ) ) ) | 
						
							| 64 | 63 | adantld | ⊢ ( ( 𝐺  =  ( 𝐹  cyclShift  𝑆 )  ∧  𝐹  ∈  Word  𝐴  ∧  𝑆  ∈  ℤ )  →  ( ( 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( ( 𝑗  +  𝑆 )  ∈  ℤ  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ ) ) ) | 
						
							| 65 | 64 | imp | ⊢ ( ( ( 𝐺  =  ( 𝐹  cyclShift  𝑆 )  ∧  𝐹  ∈  Word  𝐴  ∧  𝑆  ∈  ℤ )  ∧  ( 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( ( 𝑗  +  𝑆 )  ∈  ℤ  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ ) ) | 
						
							| 66 |  | zmodfzo | ⊢ ( ( ( 𝑗  +  𝑆 )  ∈  ℤ  ∧  ( ♯ ‘ 𝐹 )  ∈  ℕ )  →  ( ( 𝑗  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) )  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 67 | 65 66 | syl | ⊢ ( ( ( 𝐺  =  ( 𝐹  cyclShift  𝑆 )  ∧  𝐹  ∈  Word  𝐴  ∧  𝑆  ∈  ℤ )  ∧  ( 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( ( 𝑗  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) )  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) | 
						
							| 68 |  | fveqeq2 | ⊢ ( 𝑥  =  ( ( 𝑖  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) )  →  ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  ↔  ( 𝐹 ‘ ( ( 𝑖  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) )  =  ( 𝐹 ‘ 𝑦 ) ) ) | 
						
							| 69 |  | eqeq1 | ⊢ ( 𝑥  =  ( ( 𝑖  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) )  →  ( 𝑥  =  𝑦  ↔  ( ( 𝑖  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) )  =  𝑦 ) ) | 
						
							| 70 | 68 69 | imbi12d | ⊢ ( 𝑥  =  ( ( 𝑖  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) )  →  ( ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 )  ↔  ( ( 𝐹 ‘ ( ( 𝑖  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) )  =  ( 𝐹 ‘ 𝑦 )  →  ( ( 𝑖  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) )  =  𝑦 ) ) ) | 
						
							| 71 |  | fveq2 | ⊢ ( 𝑦  =  ( ( 𝑗  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) )  →  ( 𝐹 ‘ 𝑦 )  =  ( 𝐹 ‘ ( ( 𝑗  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) ) ) | 
						
							| 72 | 71 | eqeq2d | ⊢ ( 𝑦  =  ( ( 𝑗  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) )  →  ( ( 𝐹 ‘ ( ( 𝑖  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) )  =  ( 𝐹 ‘ 𝑦 )  ↔  ( 𝐹 ‘ ( ( 𝑖  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) )  =  ( 𝐹 ‘ ( ( 𝑗  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) ) ) ) | 
						
							| 73 |  | eqeq2 | ⊢ ( 𝑦  =  ( ( 𝑗  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) )  →  ( ( ( 𝑖  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) )  =  𝑦  ↔  ( ( 𝑖  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) )  =  ( ( 𝑗  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) ) ) | 
						
							| 74 | 72 73 | imbi12d | ⊢ ( 𝑦  =  ( ( 𝑗  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) )  →  ( ( ( 𝐹 ‘ ( ( 𝑖  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) )  =  ( 𝐹 ‘ 𝑦 )  →  ( ( 𝑖  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) )  =  𝑦 )  ↔  ( ( 𝐹 ‘ ( ( 𝑖  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) )  =  ( 𝐹 ‘ ( ( 𝑗  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) )  →  ( ( 𝑖  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) )  =  ( ( 𝑗  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) ) ) ) | 
						
							| 75 | 70 74 | rspc2v | ⊢ ( ( ( ( 𝑖  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) )  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∧  ( ( 𝑗  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) )  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( ∀ 𝑥  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 )  →  ( ( 𝐹 ‘ ( ( 𝑖  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) )  =  ( 𝐹 ‘ ( ( 𝑗  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) )  →  ( ( 𝑖  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) )  =  ( ( 𝑗  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) ) ) ) | 
						
							| 76 | 49 67 75 | syl2anc | ⊢ ( ( ( 𝐺  =  ( 𝐹  cyclShift  𝑆 )  ∧  𝐹  ∈  Word  𝐴  ∧  𝑆  ∈  ℤ )  ∧  ( 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( ∀ 𝑥  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 )  →  ( ( 𝐹 ‘ ( ( 𝑖  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) )  =  ( 𝐹 ‘ ( ( 𝑗  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) )  →  ( ( 𝑖  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) )  =  ( ( 𝑗  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) ) ) ) | 
						
							| 77 |  | simpr | ⊢ ( ( ( ( 𝐺  =  ( 𝐹  cyclShift  𝑆 )  ∧  𝐹  ∈  Word  𝐴  ∧  𝑆  ∈  ℤ )  ∧  ( 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) )  ∧  ( ( 𝐹 ‘ ( ( 𝑖  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) )  =  ( 𝐹 ‘ ( ( 𝑗  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) )  →  ( ( 𝑖  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) )  =  ( ( 𝑗  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) ) )  →  ( ( 𝐹 ‘ ( ( 𝑖  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) )  =  ( 𝐹 ‘ ( ( 𝑗  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) )  →  ( ( 𝑖  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) )  =  ( ( 𝑗  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) ) ) | 
						
							| 78 |  | addmodlteq | ⊢ ( ( 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝑆  ∈  ℤ )  →  ( ( ( 𝑖  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) )  =  ( ( 𝑗  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) )  ↔  𝑖  =  𝑗 ) ) | 
						
							| 79 | 78 | 3expa | ⊢ ( ( ( 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  ∧  𝑆  ∈  ℤ )  →  ( ( ( 𝑖  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) )  =  ( ( 𝑗  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) )  ↔  𝑖  =  𝑗 ) ) | 
						
							| 80 | 79 | ancoms | ⊢ ( ( 𝑆  ∈  ℤ  ∧  ( 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( ( ( 𝑖  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) )  =  ( ( 𝑗  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) )  ↔  𝑖  =  𝑗 ) ) | 
						
							| 81 | 80 | bicomd | ⊢ ( ( 𝑆  ∈  ℤ  ∧  ( 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( 𝑖  =  𝑗  ↔  ( ( 𝑖  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) )  =  ( ( 𝑗  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) ) ) | 
						
							| 82 | 81 | 3ad2antl3 | ⊢ ( ( ( 𝐺  =  ( 𝐹  cyclShift  𝑆 )  ∧  𝐹  ∈  Word  𝐴  ∧  𝑆  ∈  ℤ )  ∧  ( 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( 𝑖  =  𝑗  ↔  ( ( 𝑖  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) )  =  ( ( 𝑗  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) ) ) | 
						
							| 83 | 82 | adantr | ⊢ ( ( ( ( 𝐺  =  ( 𝐹  cyclShift  𝑆 )  ∧  𝐹  ∈  Word  𝐴  ∧  𝑆  ∈  ℤ )  ∧  ( 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) )  ∧  ( ( 𝐹 ‘ ( ( 𝑖  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) )  =  ( 𝐹 ‘ ( ( 𝑗  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) )  →  ( ( 𝑖  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) )  =  ( ( 𝑗  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) ) )  →  ( 𝑖  =  𝑗  ↔  ( ( 𝑖  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) )  =  ( ( 𝑗  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) ) ) | 
						
							| 84 | 77 83 | sylibrd | ⊢ ( ( ( ( 𝐺  =  ( 𝐹  cyclShift  𝑆 )  ∧  𝐹  ∈  Word  𝐴  ∧  𝑆  ∈  ℤ )  ∧  ( 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) )  ∧  ( ( 𝐹 ‘ ( ( 𝑖  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) )  =  ( 𝐹 ‘ ( ( 𝑗  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) )  →  ( ( 𝑖  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) )  =  ( ( 𝑗  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) ) )  →  ( ( 𝐹 ‘ ( ( 𝑖  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) )  =  ( 𝐹 ‘ ( ( 𝑗  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) )  →  𝑖  =  𝑗 ) ) | 
						
							| 85 | 84 | ex | ⊢ ( ( ( 𝐺  =  ( 𝐹  cyclShift  𝑆 )  ∧  𝐹  ∈  Word  𝐴  ∧  𝑆  ∈  ℤ )  ∧  ( 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( ( ( 𝐹 ‘ ( ( 𝑖  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) )  =  ( 𝐹 ‘ ( ( 𝑗  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) )  →  ( ( 𝑖  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) )  =  ( ( 𝑗  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) )  →  ( ( 𝐹 ‘ ( ( 𝑖  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) )  =  ( 𝐹 ‘ ( ( 𝑗  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) )  →  𝑖  =  𝑗 ) ) ) | 
						
							| 86 | 76 85 | syld | ⊢ ( ( ( 𝐺  =  ( 𝐹  cyclShift  𝑆 )  ∧  𝐹  ∈  Word  𝐴  ∧  𝑆  ∈  ℤ )  ∧  ( 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( ∀ 𝑥  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 )  →  ( ( 𝐹 ‘ ( ( 𝑖  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) )  =  ( 𝐹 ‘ ( ( 𝑗  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) )  →  𝑖  =  𝑗 ) ) ) | 
						
							| 87 | 86 | impancom | ⊢ ( ( ( 𝐺  =  ( 𝐹  cyclShift  𝑆 )  ∧  𝐹  ∈  Word  𝐴  ∧  𝑆  ∈  ℤ )  ∧  ∀ 𝑥  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  →  ( ( 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) )  →  ( ( 𝐹 ‘ ( ( 𝑖  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) )  =  ( 𝐹 ‘ ( ( 𝑗  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) )  →  𝑖  =  𝑗 ) ) ) | 
						
							| 88 | 87 | imp | ⊢ ( ( ( ( 𝐺  =  ( 𝐹  cyclShift  𝑆 )  ∧  𝐹  ∈  Word  𝐴  ∧  𝑆  ∈  ℤ )  ∧  ∀ 𝑥  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  ( 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( ( 𝐹 ‘ ( ( 𝑖  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) )  =  ( 𝐹 ‘ ( ( 𝑗  +  𝑆 )  mod  ( ♯ ‘ 𝐹 ) ) )  →  𝑖  =  𝑗 ) ) | 
						
							| 89 | 31 88 | sylbid | ⊢ ( ( ( ( 𝐺  =  ( 𝐹  cyclShift  𝑆 )  ∧  𝐹  ∈  Word  𝐴  ∧  𝑆  ∈  ℤ )  ∧  ∀ 𝑥  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  ∧  ( 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) )  ∧  𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) )  →  ( ( 𝐺 ‘ 𝑖 )  =  ( 𝐺 ‘ 𝑗 )  →  𝑖  =  𝑗 ) ) | 
						
							| 90 | 89 | ralrimivva | ⊢ ( ( ( 𝐺  =  ( 𝐹  cyclShift  𝑆 )  ∧  𝐹  ∈  Word  𝐴  ∧  𝑆  ∈  ℤ )  ∧  ∀ 𝑥  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐺 ‘ 𝑖 )  =  ( 𝐺 ‘ 𝑗 )  →  𝑖  =  𝑗 ) ) | 
						
							| 91 | 90 | 3exp1 | ⊢ ( 𝐺  =  ( 𝐹  cyclShift  𝑆 )  →  ( 𝐹  ∈  Word  𝐴  →  ( 𝑆  ∈  ℤ  →  ( ∀ 𝑥  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐺 ‘ 𝑖 )  =  ( 𝐺 ‘ 𝑗 )  →  𝑖  =  𝑗 ) ) ) ) ) | 
						
							| 92 | 91 | com14 | ⊢ ( ∀ 𝑥  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 )  →  ( 𝐹  ∈  Word  𝐴  →  ( 𝑆  ∈  ℤ  →  ( 𝐺  =  ( 𝐹  cyclShift  𝑆 )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐺 ‘ 𝑖 )  =  ( 𝐺 ‘ 𝑗 )  →  𝑖  =  𝑗 ) ) ) ) ) | 
						
							| 93 | 92 | adantl | ⊢ ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝐴  ∧  ∀ 𝑥  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑦  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐹 ‘ 𝑥 )  =  ( 𝐹 ‘ 𝑦 )  →  𝑥  =  𝑦 ) )  →  ( 𝐹  ∈  Word  𝐴  →  ( 𝑆  ∈  ℤ  →  ( 𝐺  =  ( 𝐹  cyclShift  𝑆 )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐺 ‘ 𝑖 )  =  ( 𝐺 ‘ 𝑗 )  →  𝑖  =  𝑗 ) ) ) ) ) | 
						
							| 94 | 10 93 | sylbi | ⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ 𝐴  →  ( 𝐹  ∈  Word  𝐴  →  ( 𝑆  ∈  ℤ  →  ( 𝐺  =  ( 𝐹  cyclShift  𝑆 )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐺 ‘ 𝑖 )  =  ( 𝐺 ‘ 𝑗 )  →  𝑖  =  𝑗 ) ) ) ) ) | 
						
							| 95 | 94 | 3imp1 | ⊢ ( ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ 𝐴  ∧  𝐹  ∈  Word  𝐴  ∧  𝑆  ∈  ℤ )  ∧  𝐺  =  ( 𝐹  cyclShift  𝑆 ) )  →  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐺 ‘ 𝑖 )  =  ( 𝐺 ‘ 𝑗 )  →  𝑖  =  𝑗 ) ) | 
						
							| 96 | 9 95 | jca | ⊢ ( ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ 𝐴  ∧  𝐹  ∈  Word  𝐴  ∧  𝑆  ∈  ℤ )  ∧  𝐺  =  ( 𝐹  cyclShift  𝑆 ) )  →  ( 𝐺 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝐴  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐺 ‘ 𝑖 )  =  ( 𝐺 ‘ 𝑗 )  →  𝑖  =  𝑗 ) ) ) | 
						
							| 97 | 96 | 3exp1 | ⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ 𝐴  →  ( 𝐹  ∈  Word  𝐴  →  ( 𝑆  ∈  ℤ  →  ( 𝐺  =  ( 𝐹  cyclShift  𝑆 )  →  ( 𝐺 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝐴  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐺 ‘ 𝑖 )  =  ( 𝐺 ‘ 𝑗 )  →  𝑖  =  𝑗 ) ) ) ) ) ) | 
						
							| 98 | 3 97 | mpd | ⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ 𝐴  →  ( 𝑆  ∈  ℤ  →  ( 𝐺  =  ( 𝐹  cyclShift  𝑆 )  →  ( 𝐺 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝐴  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐺 ‘ 𝑖 )  =  ( 𝐺 ‘ 𝑗 )  →  𝑖  =  𝑗 ) ) ) ) ) | 
						
							| 99 | 98 | 3imp | ⊢ ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ 𝐴  ∧  𝑆  ∈  ℤ  ∧  𝐺  =  ( 𝐹  cyclShift  𝑆 ) )  →  ( 𝐺 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝐴  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐺 ‘ 𝑖 )  =  ( 𝐺 ‘ 𝑗 )  →  𝑖  =  𝑗 ) ) ) | 
						
							| 100 |  | dff13 | ⊢ ( 𝐺 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ 𝐴  ↔  ( 𝐺 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝐴  ∧  ∀ 𝑖  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑗  ∈  ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐺 ‘ 𝑖 )  =  ( 𝐺 ‘ 𝑗 )  →  𝑖  =  𝑗 ) ) ) | 
						
							| 101 | 99 100 | sylibr | ⊢ ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ 𝐴  ∧  𝑆  ∈  ℤ  ∧  𝐺  =  ( 𝐹  cyclShift  𝑆 ) )  →  𝐺 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ 𝐴 ) |