Step |
Hyp |
Ref |
Expression |
1 |
|
f1f |
⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ 𝐴 → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝐴 ) |
2 |
|
iswrdi |
⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝐴 → 𝐹 ∈ Word 𝐴 ) |
3 |
1 2
|
syl |
⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ 𝐴 → 𝐹 ∈ Word 𝐴 ) |
4 |
|
cshwf |
⊢ ( ( 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) → ( 𝐹 cyclShift 𝑆 ) : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝐴 ) |
5 |
4
|
3adant1 |
⊢ ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ 𝐴 ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) → ( 𝐹 cyclShift 𝑆 ) : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝐴 ) |
6 |
5
|
adantr |
⊢ ( ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ 𝐴 ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) ∧ 𝐺 = ( 𝐹 cyclShift 𝑆 ) ) → ( 𝐹 cyclShift 𝑆 ) : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝐴 ) |
7 |
|
feq1 |
⊢ ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) → ( 𝐺 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝐴 ↔ ( 𝐹 cyclShift 𝑆 ) : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝐴 ) ) |
8 |
7
|
adantl |
⊢ ( ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ 𝐴 ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) ∧ 𝐺 = ( 𝐹 cyclShift 𝑆 ) ) → ( 𝐺 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝐴 ↔ ( 𝐹 cyclShift 𝑆 ) : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝐴 ) ) |
9 |
6 8
|
mpbird |
⊢ ( ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ 𝐴 ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) ∧ 𝐺 = ( 𝐹 cyclShift 𝑆 ) ) → 𝐺 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝐴 ) |
10 |
|
dff13 |
⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ 𝐴 ↔ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝐴 ∧ ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ) |
11 |
|
fveq1 |
⊢ ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) → ( 𝐺 ‘ 𝑖 ) = ( ( 𝐹 cyclShift 𝑆 ) ‘ 𝑖 ) ) |
12 |
11
|
3ad2ant1 |
⊢ ( ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) → ( 𝐺 ‘ 𝑖 ) = ( ( 𝐹 cyclShift 𝑆 ) ‘ 𝑖 ) ) |
13 |
12
|
adantr |
⊢ ( ( ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( 𝐺 ‘ 𝑖 ) = ( ( 𝐹 cyclShift 𝑆 ) ‘ 𝑖 ) ) |
14 |
|
cshwidxmod |
⊢ ( ( 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ∧ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝐹 cyclShift 𝑆 ) ‘ 𝑖 ) = ( 𝐹 ‘ ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) ) |
15 |
14
|
3expia |
⊢ ( ( 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) → ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( ( 𝐹 cyclShift 𝑆 ) ‘ 𝑖 ) = ( 𝐹 ‘ ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) ) ) |
16 |
15
|
3adant1 |
⊢ ( ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) → ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( ( 𝐹 cyclShift 𝑆 ) ‘ 𝑖 ) = ( 𝐹 ‘ ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) ) ) |
17 |
16
|
com12 |
⊢ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) → ( ( 𝐹 cyclShift 𝑆 ) ‘ 𝑖 ) = ( 𝐹 ‘ ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) ) ) |
18 |
17
|
adantr |
⊢ ( ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) → ( ( 𝐹 cyclShift 𝑆 ) ‘ 𝑖 ) = ( 𝐹 ‘ ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) ) ) |
19 |
18
|
impcom |
⊢ ( ( ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( 𝐹 cyclShift 𝑆 ) ‘ 𝑖 ) = ( 𝐹 ‘ ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) ) |
20 |
13 19
|
eqtrd |
⊢ ( ( ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( 𝐺 ‘ 𝑖 ) = ( 𝐹 ‘ ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) ) |
21 |
|
fveq1 |
⊢ ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) → ( 𝐺 ‘ 𝑗 ) = ( ( 𝐹 cyclShift 𝑆 ) ‘ 𝑗 ) ) |
22 |
21
|
3ad2ant1 |
⊢ ( ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) → ( 𝐺 ‘ 𝑗 ) = ( ( 𝐹 cyclShift 𝑆 ) ‘ 𝑗 ) ) |
23 |
22
|
adantr |
⊢ ( ( ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( 𝐺 ‘ 𝑗 ) = ( ( 𝐹 cyclShift 𝑆 ) ‘ 𝑗 ) ) |
24 |
|
cshwidxmod |
⊢ ( ( 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝐹 cyclShift 𝑆 ) ‘ 𝑗 ) = ( 𝐹 ‘ ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) ) |
25 |
24
|
3expia |
⊢ ( ( 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) → ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( ( 𝐹 cyclShift 𝑆 ) ‘ 𝑗 ) = ( 𝐹 ‘ ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) ) ) |
26 |
25
|
3adant1 |
⊢ ( ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) → ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( ( 𝐹 cyclShift 𝑆 ) ‘ 𝑗 ) = ( 𝐹 ‘ ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) ) ) |
27 |
26
|
adantld |
⊢ ( ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) → ( ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝐹 cyclShift 𝑆 ) ‘ 𝑗 ) = ( 𝐹 ‘ ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) ) ) |
28 |
27
|
imp |
⊢ ( ( ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( 𝐹 cyclShift 𝑆 ) ‘ 𝑗 ) = ( 𝐹 ‘ ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) ) |
29 |
23 28
|
eqtrd |
⊢ ( ( ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( 𝐺 ‘ 𝑗 ) = ( 𝐹 ‘ ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) ) |
30 |
20 29
|
eqeq12d |
⊢ ( ( ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( 𝐺 ‘ 𝑖 ) = ( 𝐺 ‘ 𝑗 ) ↔ ( 𝐹 ‘ ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) = ( 𝐹 ‘ ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) ) ) |
31 |
30
|
adantlr |
⊢ ( ( ( ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) ∧ ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( 𝐺 ‘ 𝑖 ) = ( 𝐺 ‘ 𝑗 ) ↔ ( 𝐹 ‘ ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) = ( 𝐹 ‘ ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) ) ) |
32 |
|
elfzo0 |
⊢ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ↔ ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ∧ 𝑖 < ( ♯ ‘ 𝐹 ) ) ) |
33 |
|
nn0z |
⊢ ( 𝑖 ∈ ℕ0 → 𝑖 ∈ ℤ ) |
34 |
33
|
adantr |
⊢ ( ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ) → 𝑖 ∈ ℤ ) |
35 |
34
|
adantl |
⊢ ( ( 𝑆 ∈ ℤ ∧ ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) → 𝑖 ∈ ℤ ) |
36 |
|
simpl |
⊢ ( ( 𝑆 ∈ ℤ ∧ ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) → 𝑆 ∈ ℤ ) |
37 |
35 36
|
zaddcld |
⊢ ( ( 𝑆 ∈ ℤ ∧ ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) → ( 𝑖 + 𝑆 ) ∈ ℤ ) |
38 |
|
simpr |
⊢ ( ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ) → ( ♯ ‘ 𝐹 ) ∈ ℕ ) |
39 |
38
|
adantl |
⊢ ( ( 𝑆 ∈ ℤ ∧ ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) → ( ♯ ‘ 𝐹 ) ∈ ℕ ) |
40 |
37 39
|
jca |
⊢ ( ( 𝑆 ∈ ℤ ∧ ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) → ( ( 𝑖 + 𝑆 ) ∈ ℤ ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) |
41 |
40
|
ex |
⊢ ( 𝑆 ∈ ℤ → ( ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ) → ( ( 𝑖 + 𝑆 ) ∈ ℤ ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) ) |
42 |
41
|
3ad2ant3 |
⊢ ( ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) → ( ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ) → ( ( 𝑖 + 𝑆 ) ∈ ℤ ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) ) |
43 |
42
|
com12 |
⊢ ( ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ) → ( ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) → ( ( 𝑖 + 𝑆 ) ∈ ℤ ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) ) |
44 |
43
|
3adant3 |
⊢ ( ( 𝑖 ∈ ℕ0 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ∧ 𝑖 < ( ♯ ‘ 𝐹 ) ) → ( ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) → ( ( 𝑖 + 𝑆 ) ∈ ℤ ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) ) |
45 |
32 44
|
sylbi |
⊢ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) → ( ( 𝑖 + 𝑆 ) ∈ ℤ ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) ) |
46 |
45
|
adantr |
⊢ ( ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) → ( ( 𝑖 + 𝑆 ) ∈ ℤ ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) ) |
47 |
46
|
impcom |
⊢ ( ( ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( 𝑖 + 𝑆 ) ∈ ℤ ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) |
48 |
|
zmodfzo |
⊢ ( ( ( 𝑖 + 𝑆 ) ∈ ℤ ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ) → ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
49 |
47 48
|
syl |
⊢ ( ( ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
50 |
|
elfzo0 |
⊢ ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ↔ ( 𝑗 ∈ ℕ0 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ∧ 𝑗 < ( ♯ ‘ 𝐹 ) ) ) |
51 |
|
nn0z |
⊢ ( 𝑗 ∈ ℕ0 → 𝑗 ∈ ℤ ) |
52 |
51
|
adantr |
⊢ ( ( 𝑗 ∈ ℕ0 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ) → 𝑗 ∈ ℤ ) |
53 |
52
|
adantl |
⊢ ( ( 𝑆 ∈ ℤ ∧ ( 𝑗 ∈ ℕ0 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) → 𝑗 ∈ ℤ ) |
54 |
|
simpl |
⊢ ( ( 𝑆 ∈ ℤ ∧ ( 𝑗 ∈ ℕ0 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) → 𝑆 ∈ ℤ ) |
55 |
53 54
|
zaddcld |
⊢ ( ( 𝑆 ∈ ℤ ∧ ( 𝑗 ∈ ℕ0 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) → ( 𝑗 + 𝑆 ) ∈ ℤ ) |
56 |
|
simpr |
⊢ ( ( 𝑗 ∈ ℕ0 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ) → ( ♯ ‘ 𝐹 ) ∈ ℕ ) |
57 |
56
|
adantl |
⊢ ( ( 𝑆 ∈ ℤ ∧ ( 𝑗 ∈ ℕ0 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) → ( ♯ ‘ 𝐹 ) ∈ ℕ ) |
58 |
55 57
|
jca |
⊢ ( ( 𝑆 ∈ ℤ ∧ ( 𝑗 ∈ ℕ0 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) → ( ( 𝑗 + 𝑆 ) ∈ ℤ ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) |
59 |
58
|
expcom |
⊢ ( ( 𝑗 ∈ ℕ0 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ) → ( 𝑆 ∈ ℤ → ( ( 𝑗 + 𝑆 ) ∈ ℤ ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) ) |
60 |
59
|
3adant3 |
⊢ ( ( 𝑗 ∈ ℕ0 ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ∧ 𝑗 < ( ♯ ‘ 𝐹 ) ) → ( 𝑆 ∈ ℤ → ( ( 𝑗 + 𝑆 ) ∈ ℤ ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) ) |
61 |
50 60
|
sylbi |
⊢ ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( 𝑆 ∈ ℤ → ( ( 𝑗 + 𝑆 ) ∈ ℤ ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) ) |
62 |
61
|
com12 |
⊢ ( 𝑆 ∈ ℤ → ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( ( 𝑗 + 𝑆 ) ∈ ℤ ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) ) |
63 |
62
|
3ad2ant3 |
⊢ ( ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) → ( 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) → ( ( 𝑗 + 𝑆 ) ∈ ℤ ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) ) |
64 |
63
|
adantld |
⊢ ( ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) → ( ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝑗 + 𝑆 ) ∈ ℤ ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) ) |
65 |
64
|
imp |
⊢ ( ( ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( 𝑗 + 𝑆 ) ∈ ℤ ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ) ) |
66 |
|
zmodfzo |
⊢ ( ( ( 𝑗 + 𝑆 ) ∈ ℤ ∧ ( ♯ ‘ 𝐹 ) ∈ ℕ ) → ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
67 |
65 66
|
syl |
⊢ ( ( ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) |
68 |
|
fveqeq2 |
⊢ ( 𝑥 = ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) → ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) = ( 𝐹 ‘ 𝑦 ) ) ) |
69 |
|
eqeq1 |
⊢ ( 𝑥 = ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) → ( 𝑥 = 𝑦 ↔ ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) = 𝑦 ) ) |
70 |
68 69
|
imbi12d |
⊢ ( 𝑥 = ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) → ( ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ↔ ( ( 𝐹 ‘ ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) = ( 𝐹 ‘ 𝑦 ) → ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) = 𝑦 ) ) ) |
71 |
|
fveq2 |
⊢ ( 𝑦 = ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) ) |
72 |
71
|
eqeq2d |
⊢ ( 𝑦 = ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) → ( ( 𝐹 ‘ ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) = ( 𝐹 ‘ 𝑦 ) ↔ ( 𝐹 ‘ ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) = ( 𝐹 ‘ ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) ) ) |
73 |
|
eqeq2 |
⊢ ( 𝑦 = ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) → ( ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) = 𝑦 ↔ ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) = ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) ) |
74 |
72 73
|
imbi12d |
⊢ ( 𝑦 = ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) → ( ( ( 𝐹 ‘ ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) = ( 𝐹 ‘ 𝑦 ) → ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) = 𝑦 ) ↔ ( ( 𝐹 ‘ ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) = ( 𝐹 ‘ ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) = ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) ) ) |
75 |
70 74
|
rspc2v |
⊢ ( ( ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) → ( ( 𝐹 ‘ ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) = ( 𝐹 ‘ ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) = ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) ) ) |
76 |
49 67 75
|
syl2anc |
⊢ ( ( ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) → ( ( 𝐹 ‘ ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) = ( 𝐹 ‘ ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) = ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) ) ) |
77 |
|
simpr |
⊢ ( ( ( ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ∧ ( ( 𝐹 ‘ ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) = ( 𝐹 ‘ ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) = ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) ) → ( ( 𝐹 ‘ ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) = ( 𝐹 ‘ ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) = ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) ) |
78 |
|
addmodlteq |
⊢ ( ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑆 ∈ ℤ ) → ( ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) = ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ↔ 𝑖 = 𝑗 ) ) |
79 |
78
|
3expa |
⊢ ( ( ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ∧ 𝑆 ∈ ℤ ) → ( ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) = ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ↔ 𝑖 = 𝑗 ) ) |
80 |
79
|
ancoms |
⊢ ( ( 𝑆 ∈ ℤ ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) = ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ↔ 𝑖 = 𝑗 ) ) |
81 |
80
|
bicomd |
⊢ ( ( 𝑆 ∈ ℤ ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( 𝑖 = 𝑗 ↔ ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) = ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) ) |
82 |
81
|
3ad2antl3 |
⊢ ( ( ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( 𝑖 = 𝑗 ↔ ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) = ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) ) |
83 |
82
|
adantr |
⊢ ( ( ( ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ∧ ( ( 𝐹 ‘ ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) = ( 𝐹 ‘ ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) = ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) ) → ( 𝑖 = 𝑗 ↔ ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) = ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) ) |
84 |
77 83
|
sylibrd |
⊢ ( ( ( ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) ∧ ( ( 𝐹 ‘ ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) = ( 𝐹 ‘ ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) = ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) ) → ( ( 𝐹 ‘ ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) = ( 𝐹 ‘ ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) → 𝑖 = 𝑗 ) ) |
85 |
84
|
ex |
⊢ ( ( ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( ( 𝐹 ‘ ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) = ( 𝐹 ‘ ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) = ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝐹 ‘ ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) = ( 𝐹 ‘ ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) → 𝑖 = 𝑗 ) ) ) |
86 |
76 85
|
syld |
⊢ ( ( ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) → ( ( 𝐹 ‘ ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) = ( 𝐹 ‘ ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) → 𝑖 = 𝑗 ) ) ) |
87 |
86
|
impancom |
⊢ ( ( ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) ∧ ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) → ( ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) → ( ( 𝐹 ‘ ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) = ( 𝐹 ‘ ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) → 𝑖 = 𝑗 ) ) ) |
88 |
87
|
imp |
⊢ ( ( ( ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) ∧ ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( 𝐹 ‘ ( ( 𝑖 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) = ( 𝐹 ‘ ( ( 𝑗 + 𝑆 ) mod ( ♯ ‘ 𝐹 ) ) ) → 𝑖 = 𝑗 ) ) |
89 |
31 88
|
sylbid |
⊢ ( ( ( ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) ∧ ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) ∧ ( 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∧ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ) ) → ( ( 𝐺 ‘ 𝑖 ) = ( 𝐺 ‘ 𝑗 ) → 𝑖 = 𝑗 ) ) |
90 |
89
|
ralrimivva |
⊢ ( ( ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) ∧ ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐺 ‘ 𝑖 ) = ( 𝐺 ‘ 𝑗 ) → 𝑖 = 𝑗 ) ) |
91 |
90
|
3exp1 |
⊢ ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) → ( 𝐹 ∈ Word 𝐴 → ( 𝑆 ∈ ℤ → ( ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐺 ‘ 𝑖 ) = ( 𝐺 ‘ 𝑗 ) → 𝑖 = 𝑗 ) ) ) ) ) |
92 |
91
|
com14 |
⊢ ( ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) → ( 𝐹 ∈ Word 𝐴 → ( 𝑆 ∈ ℤ → ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐺 ‘ 𝑖 ) = ( 𝐺 ‘ 𝑗 ) → 𝑖 = 𝑗 ) ) ) ) ) |
93 |
92
|
adantl |
⊢ ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝐴 ∧ ∀ 𝑥 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑦 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑦 ) → 𝑥 = 𝑦 ) ) → ( 𝐹 ∈ Word 𝐴 → ( 𝑆 ∈ ℤ → ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐺 ‘ 𝑖 ) = ( 𝐺 ‘ 𝑗 ) → 𝑖 = 𝑗 ) ) ) ) ) |
94 |
10 93
|
sylbi |
⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ 𝐴 → ( 𝐹 ∈ Word 𝐴 → ( 𝑆 ∈ ℤ → ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐺 ‘ 𝑖 ) = ( 𝐺 ‘ 𝑗 ) → 𝑖 = 𝑗 ) ) ) ) ) |
95 |
94
|
3imp1 |
⊢ ( ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ 𝐴 ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) ∧ 𝐺 = ( 𝐹 cyclShift 𝑆 ) ) → ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐺 ‘ 𝑖 ) = ( 𝐺 ‘ 𝑗 ) → 𝑖 = 𝑗 ) ) |
96 |
9 95
|
jca |
⊢ ( ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ 𝐴 ∧ 𝐹 ∈ Word 𝐴 ∧ 𝑆 ∈ ℤ ) ∧ 𝐺 = ( 𝐹 cyclShift 𝑆 ) ) → ( 𝐺 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝐴 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐺 ‘ 𝑖 ) = ( 𝐺 ‘ 𝑗 ) → 𝑖 = 𝑗 ) ) ) |
97 |
96
|
3exp1 |
⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ 𝐴 → ( 𝐹 ∈ Word 𝐴 → ( 𝑆 ∈ ℤ → ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) → ( 𝐺 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝐴 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐺 ‘ 𝑖 ) = ( 𝐺 ‘ 𝑗 ) → 𝑖 = 𝑗 ) ) ) ) ) ) |
98 |
3 97
|
mpd |
⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ 𝐴 → ( 𝑆 ∈ ℤ → ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) → ( 𝐺 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝐴 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐺 ‘ 𝑖 ) = ( 𝐺 ‘ 𝑗 ) → 𝑖 = 𝑗 ) ) ) ) ) |
99 |
98
|
3imp |
⊢ ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ 𝐴 ∧ 𝑆 ∈ ℤ ∧ 𝐺 = ( 𝐹 cyclShift 𝑆 ) ) → ( 𝐺 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝐴 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐺 ‘ 𝑖 ) = ( 𝐺 ‘ 𝑗 ) → 𝑖 = 𝑗 ) ) ) |
100 |
|
dff13 |
⊢ ( 𝐺 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ 𝐴 ↔ ( 𝐺 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝐴 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ∀ 𝑗 ∈ ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ( ( 𝐺 ‘ 𝑖 ) = ( 𝐺 ‘ 𝑗 ) → 𝑖 = 𝑗 ) ) ) |
101 |
99 100
|
sylibr |
⊢ ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ 𝐴 ∧ 𝑆 ∈ ℤ ∧ 𝐺 = ( 𝐹 cyclShift 𝑆 ) ) → 𝐺 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ 𝐴 ) |