Step |
Hyp |
Ref |
Expression |
1 |
|
wrdf |
⊢ ( 𝐹 ∈ Word 𝐴 → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝐴 ) |
2 |
|
df-f1 |
⊢ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ 𝐴 ↔ ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝐴 ∧ Fun ◡ 𝐹 ) ) |
3 |
2
|
biimpri |
⊢ ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝐴 ∧ Fun ◡ 𝐹 ) → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ 𝐴 ) |
4 |
1 3
|
sylan |
⊢ ( ( 𝐹 ∈ Word 𝐴 ∧ Fun ◡ 𝐹 ) → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ 𝐴 ) |
5 |
4
|
3adant3 |
⊢ ( ( 𝐹 ∈ Word 𝐴 ∧ Fun ◡ 𝐹 ∧ 𝑆 ∈ ℤ ) → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ 𝐴 ) |
6 |
5
|
adantr |
⊢ ( ( ( 𝐹 ∈ Word 𝐴 ∧ Fun ◡ 𝐹 ∧ 𝑆 ∈ ℤ ) ∧ 𝐺 = ( 𝐹 cyclShift 𝑆 ) ) → 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ 𝐴 ) |
7 |
|
simpl3 |
⊢ ( ( ( 𝐹 ∈ Word 𝐴 ∧ Fun ◡ 𝐹 ∧ 𝑆 ∈ ℤ ) ∧ 𝐺 = ( 𝐹 cyclShift 𝑆 ) ) → 𝑆 ∈ ℤ ) |
8 |
|
simpr |
⊢ ( ( ( 𝐹 ∈ Word 𝐴 ∧ Fun ◡ 𝐹 ∧ 𝑆 ∈ ℤ ) ∧ 𝐺 = ( 𝐹 cyclShift 𝑆 ) ) → 𝐺 = ( 𝐹 cyclShift 𝑆 ) ) |
9 |
|
cshf1 |
⊢ ( ( 𝐹 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ 𝐴 ∧ 𝑆 ∈ ℤ ∧ 𝐺 = ( 𝐹 cyclShift 𝑆 ) ) → 𝐺 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ 𝐴 ) |
10 |
6 7 8 9
|
syl3anc |
⊢ ( ( ( 𝐹 ∈ Word 𝐴 ∧ Fun ◡ 𝐹 ∧ 𝑆 ∈ ℤ ) ∧ 𝐺 = ( 𝐹 cyclShift 𝑆 ) ) → 𝐺 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ 𝐴 ) |
11 |
10
|
ex |
⊢ ( ( 𝐹 ∈ Word 𝐴 ∧ Fun ◡ 𝐹 ∧ 𝑆 ∈ ℤ ) → ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) → 𝐺 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ 𝐴 ) ) |
12 |
|
df-f1 |
⊢ ( 𝐺 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ 𝐴 ↔ ( 𝐺 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) ⟶ 𝐴 ∧ Fun ◡ 𝐺 ) ) |
13 |
12
|
simprbi |
⊢ ( 𝐺 : ( 0 ..^ ( ♯ ‘ 𝐹 ) ) –1-1→ 𝐴 → Fun ◡ 𝐺 ) |
14 |
11 13
|
syl6 |
⊢ ( ( 𝐹 ∈ Word 𝐴 ∧ Fun ◡ 𝐹 ∧ 𝑆 ∈ ℤ ) → ( 𝐺 = ( 𝐹 cyclShift 𝑆 ) → Fun ◡ 𝐺 ) ) |