Step |
Hyp |
Ref |
Expression |
1 |
|
df-csh |
⊢ cyclShift = ( 𝑤 ∈ { 𝑓 ∣ ∃ 𝑙 ∈ ℕ0 𝑓 Fn ( 0 ..^ 𝑙 ) } , 𝑛 ∈ ℤ ↦ if ( 𝑤 = ∅ , ∅ , ( ( 𝑤 substr 〈 ( 𝑛 mod ( ♯ ‘ 𝑤 ) ) , ( ♯ ‘ 𝑤 ) 〉 ) ++ ( 𝑤 prefix ( 𝑛 mod ( ♯ ‘ 𝑤 ) ) ) ) ) ) |
2 |
|
0ex |
⊢ ∅ ∈ V |
3 |
|
ovex |
⊢ ( ( 𝑤 substr 〈 ( 𝑛 mod ( ♯ ‘ 𝑤 ) ) , ( ♯ ‘ 𝑤 ) 〉 ) ++ ( 𝑤 prefix ( 𝑛 mod ( ♯ ‘ 𝑤 ) ) ) ) ∈ V |
4 |
2 3
|
ifex |
⊢ if ( 𝑤 = ∅ , ∅ , ( ( 𝑤 substr 〈 ( 𝑛 mod ( ♯ ‘ 𝑤 ) ) , ( ♯ ‘ 𝑤 ) 〉 ) ++ ( 𝑤 prefix ( 𝑛 mod ( ♯ ‘ 𝑤 ) ) ) ) ) ∈ V |
5 |
1 4
|
dmmpo |
⊢ dom cyclShift = ( { 𝑓 ∣ ∃ 𝑙 ∈ ℕ0 𝑓 Fn ( 0 ..^ 𝑙 ) } × ℤ ) |
6 |
|
id |
⊢ ( ¬ 𝑁 ∈ ℤ → ¬ 𝑁 ∈ ℤ ) |
7 |
6
|
intnand |
⊢ ( ¬ 𝑁 ∈ ℤ → ¬ ( 𝑊 ∈ { 𝑓 ∣ ∃ 𝑙 ∈ ℕ0 𝑓 Fn ( 0 ..^ 𝑙 ) } ∧ 𝑁 ∈ ℤ ) ) |
8 |
|
ndmovg |
⊢ ( ( dom cyclShift = ( { 𝑓 ∣ ∃ 𝑙 ∈ ℕ0 𝑓 Fn ( 0 ..^ 𝑙 ) } × ℤ ) ∧ ¬ ( 𝑊 ∈ { 𝑓 ∣ ∃ 𝑙 ∈ ℕ0 𝑓 Fn ( 0 ..^ 𝑙 ) } ∧ 𝑁 ∈ ℤ ) ) → ( 𝑊 cyclShift 𝑁 ) = ∅ ) |
9 |
5 7 8
|
sylancr |
⊢ ( ¬ 𝑁 ∈ ℤ → ( 𝑊 cyclShift 𝑁 ) = ∅ ) |