Step |
Hyp |
Ref |
Expression |
1 |
|
0csh0 |
⊢ ( ∅ cyclShift 0 ) = ∅ |
2 |
|
oveq1 |
⊢ ( ∅ = 𝑊 → ( ∅ cyclShift 0 ) = ( 𝑊 cyclShift 0 ) ) |
3 |
|
id |
⊢ ( ∅ = 𝑊 → ∅ = 𝑊 ) |
4 |
1 2 3
|
3eqtr3a |
⊢ ( ∅ = 𝑊 → ( 𝑊 cyclShift 0 ) = 𝑊 ) |
5 |
4
|
a1d |
⊢ ( ∅ = 𝑊 → ( 𝑊 ∈ Word 𝑉 → ( 𝑊 cyclShift 0 ) = 𝑊 ) ) |
6 |
|
0z |
⊢ 0 ∈ ℤ |
7 |
|
cshword |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 0 ∈ ℤ ) → ( 𝑊 cyclShift 0 ) = ( ( 𝑊 substr 〈 ( 0 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) ++ ( 𝑊 prefix ( 0 mod ( ♯ ‘ 𝑊 ) ) ) ) ) |
8 |
6 7
|
mpan2 |
⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 cyclShift 0 ) = ( ( 𝑊 substr 〈 ( 0 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) ++ ( 𝑊 prefix ( 0 mod ( ♯ ‘ 𝑊 ) ) ) ) ) |
9 |
8
|
adantr |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊 ) → ( 𝑊 cyclShift 0 ) = ( ( 𝑊 substr 〈 ( 0 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) ++ ( 𝑊 prefix ( 0 mod ( ♯ ‘ 𝑊 ) ) ) ) ) |
10 |
|
necom |
⊢ ( ∅ ≠ 𝑊 ↔ 𝑊 ≠ ∅ ) |
11 |
|
lennncl |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) → ( ♯ ‘ 𝑊 ) ∈ ℕ ) |
12 |
|
nnrp |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ → ( ♯ ‘ 𝑊 ) ∈ ℝ+ ) |
13 |
|
0mod |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℝ+ → ( 0 mod ( ♯ ‘ 𝑊 ) ) = 0 ) |
14 |
13
|
opeq1d |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℝ+ → 〈 ( 0 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 = 〈 0 , ( ♯ ‘ 𝑊 ) 〉 ) |
15 |
14
|
oveq2d |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℝ+ → ( 𝑊 substr 〈 ( 0 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) = ( 𝑊 substr 〈 0 , ( ♯ ‘ 𝑊 ) 〉 ) ) |
16 |
13
|
oveq2d |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℝ+ → ( 𝑊 prefix ( 0 mod ( ♯ ‘ 𝑊 ) ) ) = ( 𝑊 prefix 0 ) ) |
17 |
15 16
|
oveq12d |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℝ+ → ( ( 𝑊 substr 〈 ( 0 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) ++ ( 𝑊 prefix ( 0 mod ( ♯ ‘ 𝑊 ) ) ) ) = ( ( 𝑊 substr 〈 0 , ( ♯ ‘ 𝑊 ) 〉 ) ++ ( 𝑊 prefix 0 ) ) ) |
18 |
11 12 17
|
3syl |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) → ( ( 𝑊 substr 〈 ( 0 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) ++ ( 𝑊 prefix ( 0 mod ( ♯ ‘ 𝑊 ) ) ) ) = ( ( 𝑊 substr 〈 0 , ( ♯ ‘ 𝑊 ) 〉 ) ++ ( 𝑊 prefix 0 ) ) ) |
19 |
10 18
|
sylan2b |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊 ) → ( ( 𝑊 substr 〈 ( 0 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) ++ ( 𝑊 prefix ( 0 mod ( ♯ ‘ 𝑊 ) ) ) ) = ( ( 𝑊 substr 〈 0 , ( ♯ ‘ 𝑊 ) 〉 ) ++ ( 𝑊 prefix 0 ) ) ) |
20 |
9 19
|
eqtrd |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊 ) → ( 𝑊 cyclShift 0 ) = ( ( 𝑊 substr 〈 0 , ( ♯ ‘ 𝑊 ) 〉 ) ++ ( 𝑊 prefix 0 ) ) ) |
21 |
|
lencl |
⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) |
22 |
|
pfxval |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) → ( 𝑊 prefix ( ♯ ‘ 𝑊 ) ) = ( 𝑊 substr 〈 0 , ( ♯ ‘ 𝑊 ) 〉 ) ) |
23 |
21 22
|
mpdan |
⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 prefix ( ♯ ‘ 𝑊 ) ) = ( 𝑊 substr 〈 0 , ( ♯ ‘ 𝑊 ) 〉 ) ) |
24 |
|
pfxid |
⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 prefix ( ♯ ‘ 𝑊 ) ) = 𝑊 ) |
25 |
23 24
|
eqtr3d |
⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 substr 〈 0 , ( ♯ ‘ 𝑊 ) 〉 ) = 𝑊 ) |
26 |
25
|
adantr |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊 ) → ( 𝑊 substr 〈 0 , ( ♯ ‘ 𝑊 ) 〉 ) = 𝑊 ) |
27 |
|
pfx00 |
⊢ ( 𝑊 prefix 0 ) = ∅ |
28 |
27
|
a1i |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊 ) → ( 𝑊 prefix 0 ) = ∅ ) |
29 |
26 28
|
oveq12d |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊 ) → ( ( 𝑊 substr 〈 0 , ( ♯ ‘ 𝑊 ) 〉 ) ++ ( 𝑊 prefix 0 ) ) = ( 𝑊 ++ ∅ ) ) |
30 |
|
ccatrid |
⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 ++ ∅ ) = 𝑊 ) |
31 |
30
|
adantr |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊 ) → ( 𝑊 ++ ∅ ) = 𝑊 ) |
32 |
20 29 31
|
3eqtrd |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ∅ ≠ 𝑊 ) → ( 𝑊 cyclShift 0 ) = 𝑊 ) |
33 |
32
|
expcom |
⊢ ( ∅ ≠ 𝑊 → ( 𝑊 ∈ Word 𝑉 → ( 𝑊 cyclShift 0 ) = 𝑊 ) ) |
34 |
5 33
|
pm2.61ine |
⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 cyclShift 0 ) = 𝑊 ) |