Step |
Hyp |
Ref |
Expression |
1 |
|
simpr |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) → 𝑈 ∈ Word 𝑉 ) |
2 |
1
|
adantr |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) → 𝑈 ∈ Word 𝑉 ) |
3 |
|
zsubcl |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( 𝑀 − 𝑁 ) ∈ ℤ ) |
4 |
3
|
ancoms |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑀 − 𝑁 ) ∈ ℤ ) |
5 |
4
|
adantl |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) → ( 𝑀 − 𝑁 ) ∈ ℤ ) |
6 |
|
simpr |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → 𝑀 ∈ ℤ ) |
7 |
6
|
adantl |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) → 𝑀 ∈ ℤ ) |
8 |
2 5 7
|
3jca |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) → ( 𝑈 ∈ Word 𝑉 ∧ ( 𝑀 − 𝑁 ) ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) |
9 |
8
|
adantr |
⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) ∧ ( 𝑊 cyclShift 𝑁 ) = ( 𝑈 cyclShift 𝑀 ) ) → ( 𝑈 ∈ Word 𝑉 ∧ ( 𝑀 − 𝑁 ) ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) |
10 |
|
3cshw |
⊢ ( ( 𝑈 ∈ Word 𝑉 ∧ ( 𝑀 − 𝑁 ) ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑈 cyclShift ( 𝑀 − 𝑁 ) ) = ( ( ( 𝑈 cyclShift 𝑀 ) cyclShift ( 𝑀 − 𝑁 ) ) cyclShift ( ( ♯ ‘ 𝑈 ) − 𝑀 ) ) ) |
11 |
9 10
|
syl |
⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) ∧ ( 𝑊 cyclShift 𝑁 ) = ( 𝑈 cyclShift 𝑀 ) ) → ( 𝑈 cyclShift ( 𝑀 − 𝑁 ) ) = ( ( ( 𝑈 cyclShift 𝑀 ) cyclShift ( 𝑀 − 𝑁 ) ) cyclShift ( ( ♯ ‘ 𝑈 ) − 𝑀 ) ) ) |
12 |
|
simpl |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) → ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ) |
13 |
12
|
ancomd |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) → ( 𝑈 ∈ Word 𝑉 ∧ 𝑊 ∈ Word 𝑉 ) ) |
14 |
13
|
adantr |
⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) ∧ ( 𝑊 cyclShift 𝑁 ) = ( 𝑈 cyclShift 𝑀 ) ) → ( 𝑈 ∈ Word 𝑉 ∧ 𝑊 ∈ Word 𝑉 ) ) |
15 |
|
simpr |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) → ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) |
16 |
15
|
ancomd |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) → ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) |
17 |
16
|
adantr |
⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) ∧ ( 𝑊 cyclShift 𝑁 ) = ( 𝑈 cyclShift 𝑀 ) ) → ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) |
18 |
|
simpr |
⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) ∧ ( 𝑊 cyclShift 𝑁 ) = ( 𝑈 cyclShift 𝑀 ) ) → ( 𝑊 cyclShift 𝑁 ) = ( 𝑈 cyclShift 𝑀 ) ) |
19 |
18
|
eqcomd |
⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) ∧ ( 𝑊 cyclShift 𝑁 ) = ( 𝑈 cyclShift 𝑀 ) ) → ( 𝑈 cyclShift 𝑀 ) = ( 𝑊 cyclShift 𝑁 ) ) |
20 |
|
cshwleneq |
⊢ ( ( ( 𝑈 ∈ Word 𝑉 ∧ 𝑊 ∈ Word 𝑉 ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ∧ ( 𝑈 cyclShift 𝑀 ) = ( 𝑊 cyclShift 𝑁 ) ) → ( ♯ ‘ 𝑈 ) = ( ♯ ‘ 𝑊 ) ) |
21 |
14 17 19 20
|
syl3anc |
⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) ∧ ( 𝑊 cyclShift 𝑁 ) = ( 𝑈 cyclShift 𝑀 ) ) → ( ♯ ‘ 𝑈 ) = ( ♯ ‘ 𝑊 ) ) |
22 |
21
|
oveq1d |
⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) ∧ ( 𝑊 cyclShift 𝑁 ) = ( 𝑈 cyclShift 𝑀 ) ) → ( ( ♯ ‘ 𝑈 ) − 𝑀 ) = ( ( ♯ ‘ 𝑊 ) − 𝑀 ) ) |
23 |
22
|
oveq2d |
⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) ∧ ( 𝑊 cyclShift 𝑁 ) = ( 𝑈 cyclShift 𝑀 ) ) → ( ( ( 𝑈 cyclShift 𝑀 ) cyclShift ( 𝑀 − 𝑁 ) ) cyclShift ( ( ♯ ‘ 𝑈 ) − 𝑀 ) ) = ( ( ( 𝑈 cyclShift 𝑀 ) cyclShift ( 𝑀 − 𝑁 ) ) cyclShift ( ( ♯ ‘ 𝑊 ) − 𝑀 ) ) ) |
24 |
11 23
|
eqtrd |
⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) ∧ ( 𝑊 cyclShift 𝑁 ) = ( 𝑈 cyclShift 𝑀 ) ) → ( 𝑈 cyclShift ( 𝑀 − 𝑁 ) ) = ( ( ( 𝑈 cyclShift 𝑀 ) cyclShift ( 𝑀 − 𝑁 ) ) cyclShift ( ( ♯ ‘ 𝑊 ) − 𝑀 ) ) ) |
25 |
19
|
oveq1d |
⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) ∧ ( 𝑊 cyclShift 𝑁 ) = ( 𝑈 cyclShift 𝑀 ) ) → ( ( 𝑈 cyclShift 𝑀 ) cyclShift ( 𝑀 − 𝑁 ) ) = ( ( 𝑊 cyclShift 𝑁 ) cyclShift ( 𝑀 − 𝑁 ) ) ) |
26 |
|
simpl |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) → 𝑊 ∈ Word 𝑉 ) |
27 |
26
|
adantr |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) → 𝑊 ∈ Word 𝑉 ) |
28 |
|
simpl |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → 𝑁 ∈ ℤ ) |
29 |
28
|
adantl |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) → 𝑁 ∈ ℤ ) |
30 |
27 29 5
|
3jca |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) → ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ ( 𝑀 − 𝑁 ) ∈ ℤ ) ) |
31 |
30
|
adantr |
⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) ∧ ( 𝑊 cyclShift 𝑁 ) = ( 𝑈 cyclShift 𝑀 ) ) → ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ ( 𝑀 − 𝑁 ) ∈ ℤ ) ) |
32 |
|
2cshw |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ ( 𝑀 − 𝑁 ) ∈ ℤ ) → ( ( 𝑊 cyclShift 𝑁 ) cyclShift ( 𝑀 − 𝑁 ) ) = ( 𝑊 cyclShift ( 𝑁 + ( 𝑀 − 𝑁 ) ) ) ) |
33 |
31 32
|
syl |
⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) ∧ ( 𝑊 cyclShift 𝑁 ) = ( 𝑈 cyclShift 𝑀 ) ) → ( ( 𝑊 cyclShift 𝑁 ) cyclShift ( 𝑀 − 𝑁 ) ) = ( 𝑊 cyclShift ( 𝑁 + ( 𝑀 − 𝑁 ) ) ) ) |
34 |
|
zcn |
⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℂ ) |
35 |
|
zcn |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℂ ) |
36 |
34 35
|
anim12i |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ ) ) |
37 |
36
|
adantl |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) → ( 𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ ) ) |
38 |
37
|
adantr |
⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) ∧ ( 𝑊 cyclShift 𝑁 ) = ( 𝑈 cyclShift 𝑀 ) ) → ( 𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ ) ) |
39 |
|
pncan3 |
⊢ ( ( 𝑁 ∈ ℂ ∧ 𝑀 ∈ ℂ ) → ( 𝑁 + ( 𝑀 − 𝑁 ) ) = 𝑀 ) |
40 |
38 39
|
syl |
⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) ∧ ( 𝑊 cyclShift 𝑁 ) = ( 𝑈 cyclShift 𝑀 ) ) → ( 𝑁 + ( 𝑀 − 𝑁 ) ) = 𝑀 ) |
41 |
40
|
oveq2d |
⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) ∧ ( 𝑊 cyclShift 𝑁 ) = ( 𝑈 cyclShift 𝑀 ) ) → ( 𝑊 cyclShift ( 𝑁 + ( 𝑀 − 𝑁 ) ) ) = ( 𝑊 cyclShift 𝑀 ) ) |
42 |
25 33 41
|
3eqtrd |
⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) ∧ ( 𝑊 cyclShift 𝑁 ) = ( 𝑈 cyclShift 𝑀 ) ) → ( ( 𝑈 cyclShift 𝑀 ) cyclShift ( 𝑀 − 𝑁 ) ) = ( 𝑊 cyclShift 𝑀 ) ) |
43 |
42
|
oveq1d |
⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) ∧ ( 𝑊 cyclShift 𝑁 ) = ( 𝑈 cyclShift 𝑀 ) ) → ( ( ( 𝑈 cyclShift 𝑀 ) cyclShift ( 𝑀 − 𝑁 ) ) cyclShift ( ( ♯ ‘ 𝑊 ) − 𝑀 ) ) = ( ( 𝑊 cyclShift 𝑀 ) cyclShift ( ( ♯ ‘ 𝑊 ) − 𝑀 ) ) ) |
44 |
|
lencl |
⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) |
45 |
44
|
nn0zd |
⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℤ ) |
46 |
45
|
adantr |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) → ( ♯ ‘ 𝑊 ) ∈ ℤ ) |
47 |
|
zsubcl |
⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( ♯ ‘ 𝑊 ) − 𝑀 ) ∈ ℤ ) |
48 |
46 6 47
|
syl2an |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) → ( ( ♯ ‘ 𝑊 ) − 𝑀 ) ∈ ℤ ) |
49 |
27 7 48
|
3jca |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) → ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ ( ( ♯ ‘ 𝑊 ) − 𝑀 ) ∈ ℤ ) ) |
50 |
49
|
adantr |
⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) ∧ ( 𝑊 cyclShift 𝑁 ) = ( 𝑈 cyclShift 𝑀 ) ) → ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ ( ( ♯ ‘ 𝑊 ) − 𝑀 ) ∈ ℤ ) ) |
51 |
|
2cshw |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ∧ ( ( ♯ ‘ 𝑊 ) − 𝑀 ) ∈ ℤ ) → ( ( 𝑊 cyclShift 𝑀 ) cyclShift ( ( ♯ ‘ 𝑊 ) − 𝑀 ) ) = ( 𝑊 cyclShift ( 𝑀 + ( ( ♯ ‘ 𝑊 ) − 𝑀 ) ) ) ) |
52 |
50 51
|
syl |
⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) ∧ ( 𝑊 cyclShift 𝑁 ) = ( 𝑈 cyclShift 𝑀 ) ) → ( ( 𝑊 cyclShift 𝑀 ) cyclShift ( ( ♯ ‘ 𝑊 ) − 𝑀 ) ) = ( 𝑊 cyclShift ( 𝑀 + ( ( ♯ ‘ 𝑊 ) − 𝑀 ) ) ) ) |
53 |
24 43 52
|
3eqtrd |
⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) ∧ ( 𝑊 cyclShift 𝑁 ) = ( 𝑈 cyclShift 𝑀 ) ) → ( 𝑈 cyclShift ( 𝑀 − 𝑁 ) ) = ( 𝑊 cyclShift ( 𝑀 + ( ( ♯ ‘ 𝑊 ) − 𝑀 ) ) ) ) |
54 |
44
|
nn0cnd |
⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℂ ) |
55 |
54
|
adantr |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) → ( ♯ ‘ 𝑊 ) ∈ ℂ ) |
56 |
35
|
adantl |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → 𝑀 ∈ ℂ ) |
57 |
55 56
|
anim12i |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) → ( ( ♯ ‘ 𝑊 ) ∈ ℂ ∧ 𝑀 ∈ ℂ ) ) |
58 |
57
|
ancomd |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) → ( 𝑀 ∈ ℂ ∧ ( ♯ ‘ 𝑊 ) ∈ ℂ ) ) |
59 |
58
|
adantr |
⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) ∧ ( 𝑊 cyclShift 𝑁 ) = ( 𝑈 cyclShift 𝑀 ) ) → ( 𝑀 ∈ ℂ ∧ ( ♯ ‘ 𝑊 ) ∈ ℂ ) ) |
60 |
|
pncan3 |
⊢ ( ( 𝑀 ∈ ℂ ∧ ( ♯ ‘ 𝑊 ) ∈ ℂ ) → ( 𝑀 + ( ( ♯ ‘ 𝑊 ) − 𝑀 ) ) = ( ♯ ‘ 𝑊 ) ) |
61 |
59 60
|
syl |
⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) ∧ ( 𝑊 cyclShift 𝑁 ) = ( 𝑈 cyclShift 𝑀 ) ) → ( 𝑀 + ( ( ♯ ‘ 𝑊 ) − 𝑀 ) ) = ( ♯ ‘ 𝑊 ) ) |
62 |
61
|
oveq2d |
⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) ∧ ( 𝑊 cyclShift 𝑁 ) = ( 𝑈 cyclShift 𝑀 ) ) → ( 𝑊 cyclShift ( 𝑀 + ( ( ♯ ‘ 𝑊 ) − 𝑀 ) ) ) = ( 𝑊 cyclShift ( ♯ ‘ 𝑊 ) ) ) |
63 |
|
cshwn |
⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 cyclShift ( ♯ ‘ 𝑊 ) ) = 𝑊 ) |
64 |
27 63
|
syl |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) → ( 𝑊 cyclShift ( ♯ ‘ 𝑊 ) ) = 𝑊 ) |
65 |
64
|
adantr |
⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) ∧ ( 𝑊 cyclShift 𝑁 ) = ( 𝑈 cyclShift 𝑀 ) ) → ( 𝑊 cyclShift ( ♯ ‘ 𝑊 ) ) = 𝑊 ) |
66 |
53 62 65
|
3eqtrd |
⊢ ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) ∧ ( 𝑊 cyclShift 𝑁 ) = ( 𝑈 cyclShift 𝑀 ) ) → ( 𝑈 cyclShift ( 𝑀 − 𝑁 ) ) = 𝑊 ) |
67 |
66
|
ex |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) → ( ( 𝑊 cyclShift 𝑁 ) = ( 𝑈 cyclShift 𝑀 ) → ( 𝑈 cyclShift ( 𝑀 − 𝑁 ) ) = 𝑊 ) ) |