Step |
Hyp |
Ref |
Expression |
1 |
|
id |
⊢ ( 𝑊 ∈ Word 𝑉 → 𝑊 ∈ Word 𝑉 ) |
2 |
1
|
ancli |
⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ∈ Word 𝑉 ) ) |
3 |
2
|
anim1i |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) → ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) ) |
4 |
3
|
3impb |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) ) |
5 |
|
cshweqdif2 |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) → ( ( 𝑊 cyclShift 𝑁 ) = ( 𝑊 cyclShift 𝑀 ) → ( 𝑊 cyclShift ( 𝑀 − 𝑁 ) ) = 𝑊 ) ) |
6 |
4 5
|
syl |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( 𝑊 cyclShift 𝑁 ) = ( 𝑊 cyclShift 𝑀 ) → ( 𝑊 cyclShift ( 𝑀 − 𝑁 ) ) = 𝑊 ) ) |