Step |
Hyp |
Ref |
Expression |
1 |
|
oveq1 |
⊢ ( 𝑥 = 0 → ( 𝑥 · 𝐿 ) = ( 0 · 𝐿 ) ) |
2 |
1
|
oveq2d |
⊢ ( 𝑥 = 0 → ( 𝐼 + ( 𝑥 · 𝐿 ) ) = ( 𝐼 + ( 0 · 𝐿 ) ) ) |
3 |
2
|
fvoveq1d |
⊢ ( 𝑥 = 0 → ( 𝑊 ‘ ( ( 𝐼 + ( 𝑥 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) = ( 𝑊 ‘ ( ( 𝐼 + ( 0 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
4 |
3
|
eqeq2d |
⊢ ( 𝑥 = 0 → ( ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( 𝑥 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ↔ ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( 0 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) |
5 |
4
|
imbi2d |
⊢ ( 𝑥 = 0 → ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( 𝑥 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ↔ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( 0 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) ) |
6 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 · 𝐿 ) = ( 𝑦 · 𝐿 ) ) |
7 |
6
|
oveq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝐼 + ( 𝑥 · 𝐿 ) ) = ( 𝐼 + ( 𝑦 · 𝐿 ) ) ) |
8 |
7
|
fvoveq1d |
⊢ ( 𝑥 = 𝑦 → ( 𝑊 ‘ ( ( 𝐼 + ( 𝑥 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) = ( 𝑊 ‘ ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
9 |
8
|
eqeq2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( 𝑥 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ↔ ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) |
10 |
9
|
imbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( 𝑥 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ↔ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) ) |
11 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑥 · 𝐿 ) = ( ( 𝑦 + 1 ) · 𝐿 ) ) |
12 |
11
|
oveq2d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝐼 + ( 𝑥 · 𝐿 ) ) = ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) ) |
13 |
12
|
fvoveq1d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑊 ‘ ( ( 𝐼 + ( 𝑥 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) = ( 𝑊 ‘ ( ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
14 |
13
|
eqeq2d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( 𝑥 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ↔ ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) |
15 |
14
|
imbi2d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( 𝑥 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ↔ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) ) |
16 |
|
oveq1 |
⊢ ( 𝑥 = 𝑗 → ( 𝑥 · 𝐿 ) = ( 𝑗 · 𝐿 ) ) |
17 |
16
|
oveq2d |
⊢ ( 𝑥 = 𝑗 → ( 𝐼 + ( 𝑥 · 𝐿 ) ) = ( 𝐼 + ( 𝑗 · 𝐿 ) ) ) |
18 |
17
|
fvoveq1d |
⊢ ( 𝑥 = 𝑗 → ( 𝑊 ‘ ( ( 𝐼 + ( 𝑥 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) = ( 𝑊 ‘ ( ( 𝐼 + ( 𝑗 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
19 |
18
|
eqeq2d |
⊢ ( 𝑥 = 𝑗 → ( ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( 𝑥 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ↔ ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( 𝑗 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) |
20 |
19
|
imbi2d |
⊢ ( 𝑥 = 𝑗 → ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( 𝑥 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ↔ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( 𝑗 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) ) |
21 |
|
zcn |
⊢ ( 𝐿 ∈ ℤ → 𝐿 ∈ ℂ ) |
22 |
21
|
mul02d |
⊢ ( 𝐿 ∈ ℤ → ( 0 · 𝐿 ) = 0 ) |
23 |
22
|
adantl |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) → ( 0 · 𝐿 ) = 0 ) |
24 |
23
|
adantr |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( 0 · 𝐿 ) = 0 ) |
25 |
24
|
oveq2d |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( 𝐼 + ( 0 · 𝐿 ) ) = ( 𝐼 + 0 ) ) |
26 |
|
elfzoelz |
⊢ ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → 𝐼 ∈ ℤ ) |
27 |
26
|
zcnd |
⊢ ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → 𝐼 ∈ ℂ ) |
28 |
27
|
addid1d |
⊢ ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( 𝐼 + 0 ) = 𝐼 ) |
29 |
28
|
ad2antll |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( 𝐼 + 0 ) = 𝐼 ) |
30 |
25 29
|
eqtrd |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( 𝐼 + ( 0 · 𝐿 ) ) = 𝐼 ) |
31 |
30
|
oveq1d |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( ( 𝐼 + ( 0 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) = ( 𝐼 mod ( ♯ ‘ 𝑊 ) ) ) |
32 |
|
zmodidfzoimp |
⊢ ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( 𝐼 mod ( ♯ ‘ 𝑊 ) ) = 𝐼 ) |
33 |
32
|
ad2antll |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( 𝐼 mod ( ♯ ‘ 𝑊 ) ) = 𝐼 ) |
34 |
31 33
|
eqtr2d |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → 𝐼 = ( ( 𝐼 + ( 0 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) |
35 |
34
|
fveq2d |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( 0 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
36 |
|
fveq1 |
⊢ ( 𝑊 = ( 𝑊 cyclShift 𝐿 ) → ( 𝑊 ‘ ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) = ( ( 𝑊 cyclShift 𝐿 ) ‘ ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
37 |
36
|
eqcoms |
⊢ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 → ( 𝑊 ‘ ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) = ( ( 𝑊 cyclShift 𝐿 ) ‘ ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
38 |
37
|
ad2antrl |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( 𝑊 ‘ ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) = ( ( 𝑊 cyclShift 𝐿 ) ‘ ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
39 |
38
|
adantl |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) ) → ( 𝑊 ‘ ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) = ( ( 𝑊 cyclShift 𝐿 ) ‘ ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
40 |
|
simprll |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) ) → 𝑊 ∈ Word 𝑉 ) |
41 |
|
simprlr |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) ) → 𝐿 ∈ ℤ ) |
42 |
|
elfzo0 |
⊢ ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↔ ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝐼 < ( ♯ ‘ 𝑊 ) ) ) |
43 |
|
nn0z |
⊢ ( 𝐼 ∈ ℕ0 → 𝐼 ∈ ℤ ) |
44 |
43
|
adantr |
⊢ ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) → 𝐼 ∈ ℤ ) |
45 |
|
nn0z |
⊢ ( 𝑦 ∈ ℕ0 → 𝑦 ∈ ℤ ) |
46 |
|
zmulcl |
⊢ ( ( 𝑦 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( 𝑦 · 𝐿 ) ∈ ℤ ) |
47 |
45 46
|
sylan |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝐿 ∈ ℤ ) → ( 𝑦 · 𝐿 ) ∈ ℤ ) |
48 |
47
|
ancoms |
⊢ ( ( 𝐿 ∈ ℤ ∧ 𝑦 ∈ ℕ0 ) → ( 𝑦 · 𝐿 ) ∈ ℤ ) |
49 |
|
zaddcl |
⊢ ( ( 𝐼 ∈ ℤ ∧ ( 𝑦 · 𝐿 ) ∈ ℤ ) → ( 𝐼 + ( 𝑦 · 𝐿 ) ) ∈ ℤ ) |
50 |
44 48 49
|
syl2an |
⊢ ( ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ∧ ( 𝐿 ∈ ℤ ∧ 𝑦 ∈ ℕ0 ) ) → ( 𝐼 + ( 𝑦 · 𝐿 ) ) ∈ ℤ ) |
51 |
|
simplr |
⊢ ( ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ∧ ( 𝐿 ∈ ℤ ∧ 𝑦 ∈ ℕ0 ) ) → ( ♯ ‘ 𝑊 ) ∈ ℕ ) |
52 |
50 51
|
jca |
⊢ ( ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ∧ ( 𝐿 ∈ ℤ ∧ 𝑦 ∈ ℕ0 ) ) → ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ) |
53 |
52
|
ex |
⊢ ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) → ( ( 𝐿 ∈ ℤ ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ) ) |
54 |
53
|
3adant3 |
⊢ ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝐼 < ( ♯ ‘ 𝑊 ) ) → ( ( 𝐿 ∈ ℤ ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ) ) |
55 |
42 54
|
sylbi |
⊢ ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ( 𝐿 ∈ ℤ ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ) ) |
56 |
55
|
adantl |
⊢ ( ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝐿 ∈ ℤ ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ) ) |
57 |
56
|
expd |
⊢ ( ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝐿 ∈ ℤ → ( 𝑦 ∈ ℕ0 → ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ) ) ) |
58 |
57
|
com12 |
⊢ ( 𝐿 ∈ ℤ → ( ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑦 ∈ ℕ0 → ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ) ) ) |
59 |
58
|
adantl |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) → ( ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑦 ∈ ℕ0 → ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ) ) ) |
60 |
59
|
imp |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( 𝑦 ∈ ℕ0 → ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ) ) |
61 |
60
|
impcom |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) ) → ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ) |
62 |
|
zmodfzo |
⊢ ( ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) → ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
63 |
61 62
|
syl |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) ) → ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
64 |
|
cshwidxmod |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ∧ ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 cyclShift 𝐿 ) ‘ ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) = ( 𝑊 ‘ ( ( ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) + 𝐿 ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
65 |
40 41 63 64
|
syl3anc |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) ) → ( ( 𝑊 cyclShift 𝐿 ) ‘ ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) = ( 𝑊 ‘ ( ( ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) + 𝐿 ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
66 |
|
nn0re |
⊢ ( 𝐼 ∈ ℕ0 → 𝐼 ∈ ℝ ) |
67 |
|
zre |
⊢ ( 𝐿 ∈ ℤ → 𝐿 ∈ ℝ ) |
68 |
|
nn0re |
⊢ ( 𝑦 ∈ ℕ0 → 𝑦 ∈ ℝ ) |
69 |
|
nnrp |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ → ( ♯ ‘ 𝑊 ) ∈ ℝ+ ) |
70 |
|
remulcl |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝐿 ∈ ℝ ) → ( 𝑦 · 𝐿 ) ∈ ℝ ) |
71 |
70
|
ancoms |
⊢ ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑦 · 𝐿 ) ∈ ℝ ) |
72 |
|
readdcl |
⊢ ( ( 𝐼 ∈ ℝ ∧ ( 𝑦 · 𝐿 ) ∈ ℝ ) → ( 𝐼 + ( 𝑦 · 𝐿 ) ) ∈ ℝ ) |
73 |
71 72
|
sylan2 |
⊢ ( ( 𝐼 ∈ ℝ ∧ ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ) → ( 𝐼 + ( 𝑦 · 𝐿 ) ) ∈ ℝ ) |
74 |
73
|
ancoms |
⊢ ( ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝐼 ∈ ℝ ) → ( 𝐼 + ( 𝑦 · 𝐿 ) ) ∈ ℝ ) |
75 |
74
|
adantl |
⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℝ+ ∧ ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝐼 ∈ ℝ ) ) → ( 𝐼 + ( 𝑦 · 𝐿 ) ) ∈ ℝ ) |
76 |
|
simprll |
⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℝ+ ∧ ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝐼 ∈ ℝ ) ) → 𝐿 ∈ ℝ ) |
77 |
|
simpl |
⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℝ+ ∧ ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝐼 ∈ ℝ ) ) → ( ♯ ‘ 𝑊 ) ∈ ℝ+ ) |
78 |
|
modaddmod |
⊢ ( ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) ∈ ℝ ∧ 𝐿 ∈ ℝ ∧ ( ♯ ‘ 𝑊 ) ∈ ℝ+ ) → ( ( ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) + 𝐿 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) + 𝐿 ) mod ( ♯ ‘ 𝑊 ) ) ) |
79 |
75 76 77 78
|
syl3anc |
⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℝ+ ∧ ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝐼 ∈ ℝ ) ) → ( ( ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) + 𝐿 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) + 𝐿 ) mod ( ♯ ‘ 𝑊 ) ) ) |
80 |
|
recn |
⊢ ( 𝐼 ∈ ℝ → 𝐼 ∈ ℂ ) |
81 |
80
|
adantl |
⊢ ( ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝐼 ∈ ℝ ) → 𝐼 ∈ ℂ ) |
82 |
70
|
recnd |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝐿 ∈ ℝ ) → ( 𝑦 · 𝐿 ) ∈ ℂ ) |
83 |
82
|
ancoms |
⊢ ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑦 · 𝐿 ) ∈ ℂ ) |
84 |
83
|
adantr |
⊢ ( ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝐼 ∈ ℝ ) → ( 𝑦 · 𝐿 ) ∈ ℂ ) |
85 |
|
recn |
⊢ ( 𝐿 ∈ ℝ → 𝐿 ∈ ℂ ) |
86 |
85
|
adantr |
⊢ ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → 𝐿 ∈ ℂ ) |
87 |
86
|
adantr |
⊢ ( ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝐼 ∈ ℝ ) → 𝐿 ∈ ℂ ) |
88 |
81 84 87
|
addassd |
⊢ ( ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝐼 ∈ ℝ ) → ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) + 𝐿 ) = ( 𝐼 + ( ( 𝑦 · 𝐿 ) + 𝐿 ) ) ) |
89 |
|
recn |
⊢ ( 𝑦 ∈ ℝ → 𝑦 ∈ ℂ ) |
90 |
89
|
adantl |
⊢ ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℂ ) |
91 |
|
1cnd |
⊢ ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → 1 ∈ ℂ ) |
92 |
90 91 86
|
adddird |
⊢ ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( 𝑦 + 1 ) · 𝐿 ) = ( ( 𝑦 · 𝐿 ) + ( 1 · 𝐿 ) ) ) |
93 |
85
|
mulid2d |
⊢ ( 𝐿 ∈ ℝ → ( 1 · 𝐿 ) = 𝐿 ) |
94 |
93
|
adantr |
⊢ ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 1 · 𝐿 ) = 𝐿 ) |
95 |
94
|
oveq2d |
⊢ ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( 𝑦 · 𝐿 ) + ( 1 · 𝐿 ) ) = ( ( 𝑦 · 𝐿 ) + 𝐿 ) ) |
96 |
92 95
|
eqtr2d |
⊢ ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( 𝑦 · 𝐿 ) + 𝐿 ) = ( ( 𝑦 + 1 ) · 𝐿 ) ) |
97 |
96
|
adantr |
⊢ ( ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝐼 ∈ ℝ ) → ( ( 𝑦 · 𝐿 ) + 𝐿 ) = ( ( 𝑦 + 1 ) · 𝐿 ) ) |
98 |
97
|
oveq2d |
⊢ ( ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝐼 ∈ ℝ ) → ( 𝐼 + ( ( 𝑦 · 𝐿 ) + 𝐿 ) ) = ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) ) |
99 |
88 98
|
eqtrd |
⊢ ( ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝐼 ∈ ℝ ) → ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) + 𝐿 ) = ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) ) |
100 |
99
|
adantl |
⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℝ+ ∧ ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝐼 ∈ ℝ ) ) → ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) + 𝐿 ) = ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) ) |
101 |
100
|
oveq1d |
⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℝ+ ∧ ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝐼 ∈ ℝ ) ) → ( ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) + 𝐿 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) |
102 |
79 101
|
eqtrd |
⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℝ+ ∧ ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝐼 ∈ ℝ ) ) → ( ( ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) + 𝐿 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) |
103 |
102
|
ex |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℝ+ → ( ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝐼 ∈ ℝ ) → ( ( ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) + 𝐿 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
104 |
69 103
|
syl |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ → ( ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝐼 ∈ ℝ ) → ( ( ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) + 𝐿 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
105 |
104
|
expd |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ → ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝐼 ∈ ℝ → ( ( ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) + 𝐿 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) |
106 |
105
|
com12 |
⊢ ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( ♯ ‘ 𝑊 ) ∈ ℕ → ( 𝐼 ∈ ℝ → ( ( ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) + 𝐿 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) |
107 |
67 68 106
|
syl2an |
⊢ ( ( 𝐿 ∈ ℤ ∧ 𝑦 ∈ ℕ0 ) → ( ( ♯ ‘ 𝑊 ) ∈ ℕ → ( 𝐼 ∈ ℝ → ( ( ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) + 𝐿 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) |
108 |
107
|
com13 |
⊢ ( 𝐼 ∈ ℝ → ( ( ♯ ‘ 𝑊 ) ∈ ℕ → ( ( 𝐿 ∈ ℤ ∧ 𝑦 ∈ ℕ0 ) → ( ( ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) + 𝐿 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) |
109 |
66 108
|
syl |
⊢ ( 𝐼 ∈ ℕ0 → ( ( ♯ ‘ 𝑊 ) ∈ ℕ → ( ( 𝐿 ∈ ℤ ∧ 𝑦 ∈ ℕ0 ) → ( ( ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) + 𝐿 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) |
110 |
109
|
imp |
⊢ ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) → ( ( 𝐿 ∈ ℤ ∧ 𝑦 ∈ ℕ0 ) → ( ( ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) + 𝐿 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
111 |
110
|
3adant3 |
⊢ ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝐼 < ( ♯ ‘ 𝑊 ) ) → ( ( 𝐿 ∈ ℤ ∧ 𝑦 ∈ ℕ0 ) → ( ( ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) + 𝐿 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
112 |
42 111
|
sylbi |
⊢ ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ( 𝐿 ∈ ℤ ∧ 𝑦 ∈ ℕ0 ) → ( ( ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) + 𝐿 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
113 |
112
|
expd |
⊢ ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( 𝐿 ∈ ℤ → ( 𝑦 ∈ ℕ0 → ( ( ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) + 𝐿 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) |
114 |
113
|
adantld |
⊢ ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) → ( 𝑦 ∈ ℕ0 → ( ( ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) + 𝐿 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) |
115 |
114
|
adantl |
⊢ ( ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) → ( 𝑦 ∈ ℕ0 → ( ( ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) + 𝐿 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) |
116 |
115
|
impcom |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( 𝑦 ∈ ℕ0 → ( ( ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) + 𝐿 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
117 |
116
|
impcom |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) ) → ( ( ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) + 𝐿 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) |
118 |
117
|
fveq2d |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) ) → ( 𝑊 ‘ ( ( ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) + 𝐿 ) mod ( ♯ ‘ 𝑊 ) ) ) = ( 𝑊 ‘ ( ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
119 |
39 65 118
|
3eqtrd |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) ) → ( 𝑊 ‘ ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) = ( 𝑊 ‘ ( ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
120 |
119
|
eqeq2d |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) ) → ( ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ↔ ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) |
121 |
120
|
biimpd |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) ) → ( ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) |
122 |
121
|
ex |
⊢ ( 𝑦 ∈ ℕ0 → ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) ) |
123 |
122
|
a2d |
⊢ ( 𝑦 ∈ ℕ0 → ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) → ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) ) |
124 |
5 10 15 20 35 123
|
nn0ind |
⊢ ( 𝑗 ∈ ℕ0 → ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( 𝑗 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) |
125 |
124
|
com12 |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( 𝑗 ∈ ℕ0 → ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( 𝑗 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) |
126 |
125
|
ralrimiv |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ∀ 𝑗 ∈ ℕ0 ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( 𝑗 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
127 |
126
|
ex |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) → ( ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ∀ 𝑗 ∈ ℕ0 ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( 𝑗 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) |