| Step |
Hyp |
Ref |
Expression |
| 1 |
|
oveq1 |
⊢ ( 𝑥 = 0 → ( 𝑥 · 𝐿 ) = ( 0 · 𝐿 ) ) |
| 2 |
1
|
oveq2d |
⊢ ( 𝑥 = 0 → ( 𝐼 + ( 𝑥 · 𝐿 ) ) = ( 𝐼 + ( 0 · 𝐿 ) ) ) |
| 3 |
2
|
fvoveq1d |
⊢ ( 𝑥 = 0 → ( 𝑊 ‘ ( ( 𝐼 + ( 𝑥 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) = ( 𝑊 ‘ ( ( 𝐼 + ( 0 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
| 4 |
3
|
eqeq2d |
⊢ ( 𝑥 = 0 → ( ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( 𝑥 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ↔ ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( 0 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) |
| 5 |
4
|
imbi2d |
⊢ ( 𝑥 = 0 → ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( 𝑥 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ↔ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( 0 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) ) |
| 6 |
|
oveq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 · 𝐿 ) = ( 𝑦 · 𝐿 ) ) |
| 7 |
6
|
oveq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝐼 + ( 𝑥 · 𝐿 ) ) = ( 𝐼 + ( 𝑦 · 𝐿 ) ) ) |
| 8 |
7
|
fvoveq1d |
⊢ ( 𝑥 = 𝑦 → ( 𝑊 ‘ ( ( 𝐼 + ( 𝑥 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) = ( 𝑊 ‘ ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
| 9 |
8
|
eqeq2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( 𝑥 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ↔ ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) |
| 10 |
9
|
imbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( 𝑥 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ↔ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) ) |
| 11 |
|
oveq1 |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑥 · 𝐿 ) = ( ( 𝑦 + 1 ) · 𝐿 ) ) |
| 12 |
11
|
oveq2d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝐼 + ( 𝑥 · 𝐿 ) ) = ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) ) |
| 13 |
12
|
fvoveq1d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( 𝑊 ‘ ( ( 𝐼 + ( 𝑥 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) = ( 𝑊 ‘ ( ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
| 14 |
13
|
eqeq2d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( 𝑥 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ↔ ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) |
| 15 |
14
|
imbi2d |
⊢ ( 𝑥 = ( 𝑦 + 1 ) → ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( 𝑥 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ↔ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) ) |
| 16 |
|
oveq1 |
⊢ ( 𝑥 = 𝑗 → ( 𝑥 · 𝐿 ) = ( 𝑗 · 𝐿 ) ) |
| 17 |
16
|
oveq2d |
⊢ ( 𝑥 = 𝑗 → ( 𝐼 + ( 𝑥 · 𝐿 ) ) = ( 𝐼 + ( 𝑗 · 𝐿 ) ) ) |
| 18 |
17
|
fvoveq1d |
⊢ ( 𝑥 = 𝑗 → ( 𝑊 ‘ ( ( 𝐼 + ( 𝑥 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) = ( 𝑊 ‘ ( ( 𝐼 + ( 𝑗 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
| 19 |
18
|
eqeq2d |
⊢ ( 𝑥 = 𝑗 → ( ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( 𝑥 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ↔ ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( 𝑗 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) |
| 20 |
19
|
imbi2d |
⊢ ( 𝑥 = 𝑗 → ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( 𝑥 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ↔ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( 𝑗 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) ) |
| 21 |
|
zcn |
⊢ ( 𝐿 ∈ ℤ → 𝐿 ∈ ℂ ) |
| 22 |
21
|
mul02d |
⊢ ( 𝐿 ∈ ℤ → ( 0 · 𝐿 ) = 0 ) |
| 23 |
22
|
adantl |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) → ( 0 · 𝐿 ) = 0 ) |
| 24 |
23
|
adantr |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( 0 · 𝐿 ) = 0 ) |
| 25 |
24
|
oveq2d |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( 𝐼 + ( 0 · 𝐿 ) ) = ( 𝐼 + 0 ) ) |
| 26 |
|
elfzoelz |
⊢ ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → 𝐼 ∈ ℤ ) |
| 27 |
26
|
zcnd |
⊢ ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → 𝐼 ∈ ℂ ) |
| 28 |
27
|
addridd |
⊢ ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( 𝐼 + 0 ) = 𝐼 ) |
| 29 |
28
|
ad2antll |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( 𝐼 + 0 ) = 𝐼 ) |
| 30 |
25 29
|
eqtrd |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( 𝐼 + ( 0 · 𝐿 ) ) = 𝐼 ) |
| 31 |
30
|
oveq1d |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( ( 𝐼 + ( 0 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) = ( 𝐼 mod ( ♯ ‘ 𝑊 ) ) ) |
| 32 |
|
zmodidfzoimp |
⊢ ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( 𝐼 mod ( ♯ ‘ 𝑊 ) ) = 𝐼 ) |
| 33 |
32
|
ad2antll |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( 𝐼 mod ( ♯ ‘ 𝑊 ) ) = 𝐼 ) |
| 34 |
31 33
|
eqtr2d |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → 𝐼 = ( ( 𝐼 + ( 0 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) |
| 35 |
34
|
fveq2d |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( 0 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
| 36 |
|
fveq1 |
⊢ ( 𝑊 = ( 𝑊 cyclShift 𝐿 ) → ( 𝑊 ‘ ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) = ( ( 𝑊 cyclShift 𝐿 ) ‘ ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
| 37 |
36
|
eqcoms |
⊢ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 → ( 𝑊 ‘ ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) = ( ( 𝑊 cyclShift 𝐿 ) ‘ ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
| 38 |
37
|
ad2antrl |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( 𝑊 ‘ ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) = ( ( 𝑊 cyclShift 𝐿 ) ‘ ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
| 39 |
38
|
adantl |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) ) → ( 𝑊 ‘ ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) = ( ( 𝑊 cyclShift 𝐿 ) ‘ ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
| 40 |
|
simprll |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) ) → 𝑊 ∈ Word 𝑉 ) |
| 41 |
|
simprlr |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) ) → 𝐿 ∈ ℤ ) |
| 42 |
|
elfzo0 |
⊢ ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↔ ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝐼 < ( ♯ ‘ 𝑊 ) ) ) |
| 43 |
|
nn0z |
⊢ ( 𝐼 ∈ ℕ0 → 𝐼 ∈ ℤ ) |
| 44 |
43
|
adantr |
⊢ ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) → 𝐼 ∈ ℤ ) |
| 45 |
|
nn0z |
⊢ ( 𝑦 ∈ ℕ0 → 𝑦 ∈ ℤ ) |
| 46 |
|
zmulcl |
⊢ ( ( 𝑦 ∈ ℤ ∧ 𝐿 ∈ ℤ ) → ( 𝑦 · 𝐿 ) ∈ ℤ ) |
| 47 |
45 46
|
sylan |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ 𝐿 ∈ ℤ ) → ( 𝑦 · 𝐿 ) ∈ ℤ ) |
| 48 |
47
|
ancoms |
⊢ ( ( 𝐿 ∈ ℤ ∧ 𝑦 ∈ ℕ0 ) → ( 𝑦 · 𝐿 ) ∈ ℤ ) |
| 49 |
|
zaddcl |
⊢ ( ( 𝐼 ∈ ℤ ∧ ( 𝑦 · 𝐿 ) ∈ ℤ ) → ( 𝐼 + ( 𝑦 · 𝐿 ) ) ∈ ℤ ) |
| 50 |
44 48 49
|
syl2an |
⊢ ( ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ∧ ( 𝐿 ∈ ℤ ∧ 𝑦 ∈ ℕ0 ) ) → ( 𝐼 + ( 𝑦 · 𝐿 ) ) ∈ ℤ ) |
| 51 |
|
simplr |
⊢ ( ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ∧ ( 𝐿 ∈ ℤ ∧ 𝑦 ∈ ℕ0 ) ) → ( ♯ ‘ 𝑊 ) ∈ ℕ ) |
| 52 |
50 51
|
jca |
⊢ ( ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ∧ ( 𝐿 ∈ ℤ ∧ 𝑦 ∈ ℕ0 ) ) → ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ) |
| 53 |
52
|
ex |
⊢ ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) → ( ( 𝐿 ∈ ℤ ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ) ) |
| 54 |
53
|
3adant3 |
⊢ ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝐼 < ( ♯ ‘ 𝑊 ) ) → ( ( 𝐿 ∈ ℤ ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ) ) |
| 55 |
42 54
|
sylbi |
⊢ ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ( 𝐿 ∈ ℤ ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ) ) |
| 56 |
55
|
adantl |
⊢ ( ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝐿 ∈ ℤ ∧ 𝑦 ∈ ℕ0 ) → ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ) ) |
| 57 |
56
|
expd |
⊢ ( ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝐿 ∈ ℤ → ( 𝑦 ∈ ℕ0 → ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ) ) ) |
| 58 |
57
|
com12 |
⊢ ( 𝐿 ∈ ℤ → ( ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑦 ∈ ℕ0 → ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ) ) ) |
| 59 |
58
|
adantl |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) → ( ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑦 ∈ ℕ0 → ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ) ) ) |
| 60 |
59
|
imp |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( 𝑦 ∈ ℕ0 → ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ) ) |
| 61 |
60
|
impcom |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) ) → ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ) |
| 62 |
|
zmodfzo |
⊢ ( ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) → ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 63 |
61 62
|
syl |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) ) → ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 64 |
|
cshwidxmod |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ∧ ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 cyclShift 𝐿 ) ‘ ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) = ( 𝑊 ‘ ( ( ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) + 𝐿 ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
| 65 |
40 41 63 64
|
syl3anc |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) ) → ( ( 𝑊 cyclShift 𝐿 ) ‘ ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) = ( 𝑊 ‘ ( ( ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) + 𝐿 ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
| 66 |
|
nn0re |
⊢ ( 𝐼 ∈ ℕ0 → 𝐼 ∈ ℝ ) |
| 67 |
|
zre |
⊢ ( 𝐿 ∈ ℤ → 𝐿 ∈ ℝ ) |
| 68 |
|
nn0re |
⊢ ( 𝑦 ∈ ℕ0 → 𝑦 ∈ ℝ ) |
| 69 |
|
nnrp |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ → ( ♯ ‘ 𝑊 ) ∈ ℝ+ ) |
| 70 |
|
remulcl |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝐿 ∈ ℝ ) → ( 𝑦 · 𝐿 ) ∈ ℝ ) |
| 71 |
70
|
ancoms |
⊢ ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑦 · 𝐿 ) ∈ ℝ ) |
| 72 |
|
readdcl |
⊢ ( ( 𝐼 ∈ ℝ ∧ ( 𝑦 · 𝐿 ) ∈ ℝ ) → ( 𝐼 + ( 𝑦 · 𝐿 ) ) ∈ ℝ ) |
| 73 |
71 72
|
sylan2 |
⊢ ( ( 𝐼 ∈ ℝ ∧ ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ) → ( 𝐼 + ( 𝑦 · 𝐿 ) ) ∈ ℝ ) |
| 74 |
73
|
ancoms |
⊢ ( ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝐼 ∈ ℝ ) → ( 𝐼 + ( 𝑦 · 𝐿 ) ) ∈ ℝ ) |
| 75 |
74
|
adantl |
⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℝ+ ∧ ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝐼 ∈ ℝ ) ) → ( 𝐼 + ( 𝑦 · 𝐿 ) ) ∈ ℝ ) |
| 76 |
|
simprll |
⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℝ+ ∧ ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝐼 ∈ ℝ ) ) → 𝐿 ∈ ℝ ) |
| 77 |
|
simpl |
⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℝ+ ∧ ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝐼 ∈ ℝ ) ) → ( ♯ ‘ 𝑊 ) ∈ ℝ+ ) |
| 78 |
|
modaddmod |
⊢ ( ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) ∈ ℝ ∧ 𝐿 ∈ ℝ ∧ ( ♯ ‘ 𝑊 ) ∈ ℝ+ ) → ( ( ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) + 𝐿 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) + 𝐿 ) mod ( ♯ ‘ 𝑊 ) ) ) |
| 79 |
75 76 77 78
|
syl3anc |
⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℝ+ ∧ ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝐼 ∈ ℝ ) ) → ( ( ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) + 𝐿 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) + 𝐿 ) mod ( ♯ ‘ 𝑊 ) ) ) |
| 80 |
|
recn |
⊢ ( 𝐼 ∈ ℝ → 𝐼 ∈ ℂ ) |
| 81 |
80
|
adantl |
⊢ ( ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝐼 ∈ ℝ ) → 𝐼 ∈ ℂ ) |
| 82 |
70
|
recnd |
⊢ ( ( 𝑦 ∈ ℝ ∧ 𝐿 ∈ ℝ ) → ( 𝑦 · 𝐿 ) ∈ ℂ ) |
| 83 |
82
|
ancoms |
⊢ ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑦 · 𝐿 ) ∈ ℂ ) |
| 84 |
83
|
adantr |
⊢ ( ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝐼 ∈ ℝ ) → ( 𝑦 · 𝐿 ) ∈ ℂ ) |
| 85 |
|
recn |
⊢ ( 𝐿 ∈ ℝ → 𝐿 ∈ ℂ ) |
| 86 |
85
|
adantr |
⊢ ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → 𝐿 ∈ ℂ ) |
| 87 |
86
|
adantr |
⊢ ( ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝐼 ∈ ℝ ) → 𝐿 ∈ ℂ ) |
| 88 |
81 84 87
|
addassd |
⊢ ( ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝐼 ∈ ℝ ) → ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) + 𝐿 ) = ( 𝐼 + ( ( 𝑦 · 𝐿 ) + 𝐿 ) ) ) |
| 89 |
|
recn |
⊢ ( 𝑦 ∈ ℝ → 𝑦 ∈ ℂ ) |
| 90 |
89
|
adantl |
⊢ ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → 𝑦 ∈ ℂ ) |
| 91 |
|
1cnd |
⊢ ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → 1 ∈ ℂ ) |
| 92 |
90 91 86
|
adddird |
⊢ ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( 𝑦 + 1 ) · 𝐿 ) = ( ( 𝑦 · 𝐿 ) + ( 1 · 𝐿 ) ) ) |
| 93 |
85
|
mullidd |
⊢ ( 𝐿 ∈ ℝ → ( 1 · 𝐿 ) = 𝐿 ) |
| 94 |
93
|
adantr |
⊢ ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 1 · 𝐿 ) = 𝐿 ) |
| 95 |
94
|
oveq2d |
⊢ ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( 𝑦 · 𝐿 ) + ( 1 · 𝐿 ) ) = ( ( 𝑦 · 𝐿 ) + 𝐿 ) ) |
| 96 |
92 95
|
eqtr2d |
⊢ ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( 𝑦 · 𝐿 ) + 𝐿 ) = ( ( 𝑦 + 1 ) · 𝐿 ) ) |
| 97 |
96
|
adantr |
⊢ ( ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝐼 ∈ ℝ ) → ( ( 𝑦 · 𝐿 ) + 𝐿 ) = ( ( 𝑦 + 1 ) · 𝐿 ) ) |
| 98 |
97
|
oveq2d |
⊢ ( ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝐼 ∈ ℝ ) → ( 𝐼 + ( ( 𝑦 · 𝐿 ) + 𝐿 ) ) = ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) ) |
| 99 |
88 98
|
eqtrd |
⊢ ( ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝐼 ∈ ℝ ) → ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) + 𝐿 ) = ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) ) |
| 100 |
99
|
adantl |
⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℝ+ ∧ ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝐼 ∈ ℝ ) ) → ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) + 𝐿 ) = ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) ) |
| 101 |
100
|
oveq1d |
⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℝ+ ∧ ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝐼 ∈ ℝ ) ) → ( ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) + 𝐿 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) |
| 102 |
79 101
|
eqtrd |
⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℝ+ ∧ ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝐼 ∈ ℝ ) ) → ( ( ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) + 𝐿 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) |
| 103 |
102
|
ex |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℝ+ → ( ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝐼 ∈ ℝ ) → ( ( ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) + 𝐿 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
| 104 |
69 103
|
syl |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ → ( ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) ∧ 𝐼 ∈ ℝ ) → ( ( ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) + 𝐿 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
| 105 |
104
|
expd |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ → ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝐼 ∈ ℝ → ( ( ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) + 𝐿 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) |
| 106 |
105
|
com12 |
⊢ ( ( 𝐿 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( ( ♯ ‘ 𝑊 ) ∈ ℕ → ( 𝐼 ∈ ℝ → ( ( ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) + 𝐿 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) |
| 107 |
67 68 106
|
syl2an |
⊢ ( ( 𝐿 ∈ ℤ ∧ 𝑦 ∈ ℕ0 ) → ( ( ♯ ‘ 𝑊 ) ∈ ℕ → ( 𝐼 ∈ ℝ → ( ( ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) + 𝐿 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) |
| 108 |
107
|
com13 |
⊢ ( 𝐼 ∈ ℝ → ( ( ♯ ‘ 𝑊 ) ∈ ℕ → ( ( 𝐿 ∈ ℤ ∧ 𝑦 ∈ ℕ0 ) → ( ( ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) + 𝐿 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) |
| 109 |
66 108
|
syl |
⊢ ( 𝐼 ∈ ℕ0 → ( ( ♯ ‘ 𝑊 ) ∈ ℕ → ( ( 𝐿 ∈ ℤ ∧ 𝑦 ∈ ℕ0 ) → ( ( ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) + 𝐿 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) |
| 110 |
109
|
imp |
⊢ ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) → ( ( 𝐿 ∈ ℤ ∧ 𝑦 ∈ ℕ0 ) → ( ( ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) + 𝐿 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
| 111 |
110
|
3adant3 |
⊢ ( ( 𝐼 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝐼 < ( ♯ ‘ 𝑊 ) ) → ( ( 𝐿 ∈ ℤ ∧ 𝑦 ∈ ℕ0 ) → ( ( ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) + 𝐿 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
| 112 |
42 111
|
sylbi |
⊢ ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ( 𝐿 ∈ ℤ ∧ 𝑦 ∈ ℕ0 ) → ( ( ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) + 𝐿 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
| 113 |
112
|
expd |
⊢ ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( 𝐿 ∈ ℤ → ( 𝑦 ∈ ℕ0 → ( ( ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) + 𝐿 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) |
| 114 |
113
|
adantld |
⊢ ( 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) → ( 𝑦 ∈ ℕ0 → ( ( ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) + 𝐿 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) |
| 115 |
114
|
adantl |
⊢ ( ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) → ( 𝑦 ∈ ℕ0 → ( ( ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) + 𝐿 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) |
| 116 |
115
|
impcom |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( 𝑦 ∈ ℕ0 → ( ( ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) + 𝐿 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
| 117 |
116
|
impcom |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) ) → ( ( ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) + 𝐿 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) |
| 118 |
117
|
fveq2d |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) ) → ( 𝑊 ‘ ( ( ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) + 𝐿 ) mod ( ♯ ‘ 𝑊 ) ) ) = ( 𝑊 ‘ ( ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
| 119 |
39 65 118
|
3eqtrd |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) ) → ( 𝑊 ‘ ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) = ( 𝑊 ‘ ( ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
| 120 |
119
|
eqeq2d |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) ) → ( ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ↔ ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) |
| 121 |
120
|
biimpd |
⊢ ( ( 𝑦 ∈ ℕ0 ∧ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) ) → ( ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) |
| 122 |
121
|
ex |
⊢ ( 𝑦 ∈ ℕ0 → ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) ) |
| 123 |
122
|
a2d |
⊢ ( 𝑦 ∈ ℕ0 → ( ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( 𝑦 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) → ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( ( 𝑦 + 1 ) · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) ) |
| 124 |
5 10 15 20 35 123
|
nn0ind |
⊢ ( 𝑗 ∈ ℕ0 → ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( 𝑗 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) |
| 125 |
124
|
com12 |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ( 𝑗 ∈ ℕ0 → ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( 𝑗 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) |
| 126 |
125
|
ralrimiv |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) ∧ ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) → ∀ 𝑗 ∈ ℕ0 ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( 𝑗 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
| 127 |
126
|
ex |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℤ ) → ( ( ( 𝑊 cyclShift 𝐿 ) = 𝑊 ∧ 𝐼 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ∀ 𝑗 ∈ ℕ0 ( 𝑊 ‘ 𝐼 ) = ( 𝑊 ‘ ( ( 𝐼 + ( 𝑗 · 𝐿 ) ) mod ( ♯ ‘ 𝑊 ) ) ) ) ) |