Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → 𝑊 ∈ Word 𝑉 ) |
2 |
|
elfzelz |
⊢ ( 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) → 𝑁 ∈ ℤ ) |
3 |
2
|
adantl |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → 𝑁 ∈ ℤ ) |
4 |
|
ubmelfzo |
⊢ ( 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) → ( ( ♯ ‘ 𝑊 ) − 𝑁 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
5 |
4
|
adantl |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( ♯ ‘ 𝑊 ) − 𝑁 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
6 |
|
cshwidxmod |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ∧ ( ( ♯ ‘ 𝑊 ) − 𝑁 ) ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 cyclShift 𝑁 ) ‘ ( ( ♯ ‘ 𝑊 ) − 𝑁 ) ) = ( 𝑊 ‘ ( ( ( ( ♯ ‘ 𝑊 ) − 𝑁 ) + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
7 |
1 3 5 6
|
syl3anc |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 cyclShift 𝑁 ) ‘ ( ( ♯ ‘ 𝑊 ) − 𝑁 ) ) = ( 𝑊 ‘ ( ( ( ( ♯ ‘ 𝑊 ) − 𝑁 ) + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) ) ) |
8 |
|
elfz1b |
⊢ ( 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ↔ ( 𝑁 ∈ ℕ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑁 ≤ ( ♯ ‘ 𝑊 ) ) ) |
9 |
|
nncn |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) |
10 |
|
nncn |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ → ( ♯ ‘ 𝑊 ) ∈ ℂ ) |
11 |
9 10
|
anim12ci |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) → ( ( ♯ ‘ 𝑊 ) ∈ ℂ ∧ 𝑁 ∈ ℂ ) ) |
12 |
11
|
3adant3 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑁 ≤ ( ♯ ‘ 𝑊 ) ) → ( ( ♯ ‘ 𝑊 ) ∈ ℂ ∧ 𝑁 ∈ ℂ ) ) |
13 |
8 12
|
sylbi |
⊢ ( 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) → ( ( ♯ ‘ 𝑊 ) ∈ ℂ ∧ 𝑁 ∈ ℂ ) ) |
14 |
|
npcan |
⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( ( ( ♯ ‘ 𝑊 ) − 𝑁 ) + 𝑁 ) = ( ♯ ‘ 𝑊 ) ) |
15 |
13 14
|
syl |
⊢ ( 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) → ( ( ( ♯ ‘ 𝑊 ) − 𝑁 ) + 𝑁 ) = ( ♯ ‘ 𝑊 ) ) |
16 |
15
|
oveq1d |
⊢ ( 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) → ( ( ( ( ♯ ‘ 𝑊 ) − 𝑁 ) + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( ♯ ‘ 𝑊 ) mod ( ♯ ‘ 𝑊 ) ) ) |
17 |
16
|
adantl |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( ( ( ♯ ‘ 𝑊 ) − 𝑁 ) + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) = ( ( ♯ ‘ 𝑊 ) mod ( ♯ ‘ 𝑊 ) ) ) |
18 |
|
nnrp |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ → ( ♯ ‘ 𝑊 ) ∈ ℝ+ ) |
19 |
|
modid0 |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℝ+ → ( ( ♯ ‘ 𝑊 ) mod ( ♯ ‘ 𝑊 ) ) = 0 ) |
20 |
18 19
|
syl |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ → ( ( ♯ ‘ 𝑊 ) mod ( ♯ ‘ 𝑊 ) ) = 0 ) |
21 |
20
|
3ad2ant2 |
⊢ ( ( 𝑁 ∈ ℕ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑁 ≤ ( ♯ ‘ 𝑊 ) ) → ( ( ♯ ‘ 𝑊 ) mod ( ♯ ‘ 𝑊 ) ) = 0 ) |
22 |
8 21
|
sylbi |
⊢ ( 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) → ( ( ♯ ‘ 𝑊 ) mod ( ♯ ‘ 𝑊 ) ) = 0 ) |
23 |
22
|
adantl |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( ♯ ‘ 𝑊 ) mod ( ♯ ‘ 𝑊 ) ) = 0 ) |
24 |
17 23
|
eqtrd |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( ( ( ♯ ‘ 𝑊 ) − 𝑁 ) + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) = 0 ) |
25 |
24
|
fveq2d |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 ‘ ( ( ( ( ♯ ‘ 𝑊 ) − 𝑁 ) + 𝑁 ) mod ( ♯ ‘ 𝑊 ) ) ) = ( 𝑊 ‘ 0 ) ) |
26 |
7 25
|
eqtrd |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 cyclShift 𝑁 ) ‘ ( ( ♯ ‘ 𝑊 ) − 𝑁 ) ) = ( 𝑊 ‘ 0 ) ) |