| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) )  →  𝑊  ∈  Word  𝑉 ) | 
						
							| 2 |  | elfzelz | ⊢ ( 𝑁  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) )  →  𝑁  ∈  ℤ ) | 
						
							| 3 | 2 | adantl | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) )  →  𝑁  ∈  ℤ ) | 
						
							| 4 |  | elfz1b | ⊢ ( 𝑁  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) )  ↔  ( 𝑁  ∈  ℕ  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ  ∧  𝑁  ≤  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 5 |  | simp2 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ  ∧  𝑁  ≤  ( ♯ ‘ 𝑊 ) )  →  ( ♯ ‘ 𝑊 )  ∈  ℕ ) | 
						
							| 6 | 4 5 | sylbi | ⊢ ( 𝑁  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) )  →  ( ♯ ‘ 𝑊 )  ∈  ℕ ) | 
						
							| 7 | 6 | adantl | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) )  →  ( ♯ ‘ 𝑊 )  ∈  ℕ ) | 
						
							| 8 |  | fzo0end | ⊢ ( ( ♯ ‘ 𝑊 )  ∈  ℕ  →  ( ( ♯ ‘ 𝑊 )  −  1 )  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 9 | 7 8 | syl | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) )  →  ( ( ♯ ‘ 𝑊 )  −  1 )  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 10 |  | cshwidxmod | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℤ  ∧  ( ( ♯ ‘ 𝑊 )  −  1 )  ∈  ( 0 ..^ ( ♯ ‘ 𝑊 ) ) )  →  ( ( 𝑊  cyclShift  𝑁 ) ‘ ( ( ♯ ‘ 𝑊 )  −  1 ) )  =  ( 𝑊 ‘ ( ( ( ( ♯ ‘ 𝑊 )  −  1 )  +  𝑁 )  mod  ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 11 | 1 3 9 10 | syl3anc | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) )  →  ( ( 𝑊  cyclShift  𝑁 ) ‘ ( ( ♯ ‘ 𝑊 )  −  1 ) )  =  ( 𝑊 ‘ ( ( ( ( ♯ ‘ 𝑊 )  −  1 )  +  𝑁 )  mod  ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 12 |  | nncn | ⊢ ( ( ♯ ‘ 𝑊 )  ∈  ℕ  →  ( ♯ ‘ 𝑊 )  ∈  ℂ ) | 
						
							| 13 | 12 | adantl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ )  →  ( ♯ ‘ 𝑊 )  ∈  ℂ ) | 
						
							| 14 |  | 1cnd | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ )  →  1  ∈  ℂ ) | 
						
							| 15 |  | nncn | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℂ ) | 
						
							| 16 | 15 | adantr | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ )  →  𝑁  ∈  ℂ ) | 
						
							| 17 | 13 14 16 | 3jca | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ )  →  ( ( ♯ ‘ 𝑊 )  ∈  ℂ  ∧  1  ∈  ℂ  ∧  𝑁  ∈  ℂ ) ) | 
						
							| 18 | 17 | 3adant3 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ  ∧  𝑁  ≤  ( ♯ ‘ 𝑊 ) )  →  ( ( ♯ ‘ 𝑊 )  ∈  ℂ  ∧  1  ∈  ℂ  ∧  𝑁  ∈  ℂ ) ) | 
						
							| 19 | 4 18 | sylbi | ⊢ ( 𝑁  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) )  →  ( ( ♯ ‘ 𝑊 )  ∈  ℂ  ∧  1  ∈  ℂ  ∧  𝑁  ∈  ℂ ) ) | 
						
							| 20 |  | subadd23 | ⊢ ( ( ( ♯ ‘ 𝑊 )  ∈  ℂ  ∧  1  ∈  ℂ  ∧  𝑁  ∈  ℂ )  →  ( ( ( ♯ ‘ 𝑊 )  −  1 )  +  𝑁 )  =  ( ( ♯ ‘ 𝑊 )  +  ( 𝑁  −  1 ) ) ) | 
						
							| 21 | 19 20 | syl | ⊢ ( 𝑁  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) )  →  ( ( ( ♯ ‘ 𝑊 )  −  1 )  +  𝑁 )  =  ( ( ♯ ‘ 𝑊 )  +  ( 𝑁  −  1 ) ) ) | 
						
							| 22 | 21 | oveq1d | ⊢ ( 𝑁  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) )  →  ( ( ( ( ♯ ‘ 𝑊 )  −  1 )  +  𝑁 )  mod  ( ♯ ‘ 𝑊 ) )  =  ( ( ( ♯ ‘ 𝑊 )  +  ( 𝑁  −  1 ) )  mod  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 23 |  | nnm1nn0 | ⊢ ( 𝑁  ∈  ℕ  →  ( 𝑁  −  1 )  ∈  ℕ0 ) | 
						
							| 24 | 23 | 3ad2ant1 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ  ∧  𝑁  ≤  ( ♯ ‘ 𝑊 ) )  →  ( 𝑁  −  1 )  ∈  ℕ0 ) | 
						
							| 25 |  | simp3 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ  ∧  𝑁  ≤  ( ♯ ‘ 𝑊 ) )  →  𝑁  ≤  ( ♯ ‘ 𝑊 ) ) | 
						
							| 26 |  | nnz | ⊢ ( 𝑁  ∈  ℕ  →  𝑁  ∈  ℤ ) | 
						
							| 27 |  | nnz | ⊢ ( ( ♯ ‘ 𝑊 )  ∈  ℕ  →  ( ♯ ‘ 𝑊 )  ∈  ℤ ) | 
						
							| 28 | 26 27 | anim12i | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ )  →  ( 𝑁  ∈  ℤ  ∧  ( ♯ ‘ 𝑊 )  ∈  ℤ ) ) | 
						
							| 29 | 28 | 3adant3 | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ  ∧  𝑁  ≤  ( ♯ ‘ 𝑊 ) )  →  ( 𝑁  ∈  ℤ  ∧  ( ♯ ‘ 𝑊 )  ∈  ℤ ) ) | 
						
							| 30 |  | zlem1lt | ⊢ ( ( 𝑁  ∈  ℤ  ∧  ( ♯ ‘ 𝑊 )  ∈  ℤ )  →  ( 𝑁  ≤  ( ♯ ‘ 𝑊 )  ↔  ( 𝑁  −  1 )  <  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 31 | 29 30 | syl | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ  ∧  𝑁  ≤  ( ♯ ‘ 𝑊 ) )  →  ( 𝑁  ≤  ( ♯ ‘ 𝑊 )  ↔  ( 𝑁  −  1 )  <  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 32 | 25 31 | mpbid | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ  ∧  𝑁  ≤  ( ♯ ‘ 𝑊 ) )  →  ( 𝑁  −  1 )  <  ( ♯ ‘ 𝑊 ) ) | 
						
							| 33 | 24 5 32 | 3jca | ⊢ ( ( 𝑁  ∈  ℕ  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ  ∧  𝑁  ≤  ( ♯ ‘ 𝑊 ) )  →  ( ( 𝑁  −  1 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ  ∧  ( 𝑁  −  1 )  <  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 34 | 4 33 | sylbi | ⊢ ( 𝑁  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) )  →  ( ( 𝑁  −  1 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ  ∧  ( 𝑁  −  1 )  <  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 35 |  | addmodid | ⊢ ( ( ( 𝑁  −  1 )  ∈  ℕ0  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ  ∧  ( 𝑁  −  1 )  <  ( ♯ ‘ 𝑊 ) )  →  ( ( ( ♯ ‘ 𝑊 )  +  ( 𝑁  −  1 ) )  mod  ( ♯ ‘ 𝑊 ) )  =  ( 𝑁  −  1 ) ) | 
						
							| 36 | 34 35 | syl | ⊢ ( 𝑁  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) )  →  ( ( ( ♯ ‘ 𝑊 )  +  ( 𝑁  −  1 ) )  mod  ( ♯ ‘ 𝑊 ) )  =  ( 𝑁  −  1 ) ) | 
						
							| 37 | 22 36 | eqtrd | ⊢ ( 𝑁  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) )  →  ( ( ( ( ♯ ‘ 𝑊 )  −  1 )  +  𝑁 )  mod  ( ♯ ‘ 𝑊 ) )  =  ( 𝑁  −  1 ) ) | 
						
							| 38 | 37 | fveq2d | ⊢ ( 𝑁  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) )  →  ( 𝑊 ‘ ( ( ( ( ♯ ‘ 𝑊 )  −  1 )  +  𝑁 )  mod  ( ♯ ‘ 𝑊 ) ) )  =  ( 𝑊 ‘ ( 𝑁  −  1 ) ) ) | 
						
							| 39 | 38 | adantl | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) )  →  ( 𝑊 ‘ ( ( ( ( ♯ ‘ 𝑊 )  −  1 )  +  𝑁 )  mod  ( ♯ ‘ 𝑊 ) ) )  =  ( 𝑊 ‘ ( 𝑁  −  1 ) ) ) | 
						
							| 40 | 11 39 | eqtrd | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ( 1 ... ( ♯ ‘ 𝑊 ) ) )  →  ( ( 𝑊  cyclShift  𝑁 ) ‘ ( ( ♯ ‘ 𝑊 )  −  1 ) )  =  ( 𝑊 ‘ ( 𝑁  −  1 ) ) ) |