| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0csh0 | ⊢ ( ∅  cyclShift  𝑁 )  =  ∅ | 
						
							| 2 |  | oveq1 | ⊢ ( 𝑊  =  ∅  →  ( 𝑊  cyclShift  𝑁 )  =  ( ∅  cyclShift  𝑁 ) ) | 
						
							| 3 |  | id | ⊢ ( 𝑊  =  ∅  →  𝑊  =  ∅ ) | 
						
							| 4 | 1 2 3 | 3eqtr4a | ⊢ ( 𝑊  =  ∅  →  ( 𝑊  cyclShift  𝑁 )  =  𝑊 ) | 
						
							| 5 | 4 | fveq2d | ⊢ ( 𝑊  =  ∅  →  ( ♯ ‘ ( 𝑊  cyclShift  𝑁 ) )  =  ( ♯ ‘ 𝑊 ) ) | 
						
							| 6 | 5 | a1d | ⊢ ( 𝑊  =  ∅  →  ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℤ )  →  ( ♯ ‘ ( 𝑊  cyclShift  𝑁 ) )  =  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 7 |  | cshword | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℤ )  →  ( 𝑊  cyclShift  𝑁 )  =  ( ( 𝑊  substr  〈 ( 𝑁  mod  ( ♯ ‘ 𝑊 ) ) ,  ( ♯ ‘ 𝑊 ) 〉 )  ++  ( 𝑊  prefix  ( 𝑁  mod  ( ♯ ‘ 𝑊 ) ) ) ) ) | 
						
							| 8 | 7 | fveq2d | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℤ )  →  ( ♯ ‘ ( 𝑊  cyclShift  𝑁 ) )  =  ( ♯ ‘ ( ( 𝑊  substr  〈 ( 𝑁  mod  ( ♯ ‘ 𝑊 ) ) ,  ( ♯ ‘ 𝑊 ) 〉 )  ++  ( 𝑊  prefix  ( 𝑁  mod  ( ♯ ‘ 𝑊 ) ) ) ) ) ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℤ )  ∧  𝑊  ≠  ∅ )  →  ( ♯ ‘ ( 𝑊  cyclShift  𝑁 ) )  =  ( ♯ ‘ ( ( 𝑊  substr  〈 ( 𝑁  mod  ( ♯ ‘ 𝑊 ) ) ,  ( ♯ ‘ 𝑊 ) 〉 )  ++  ( 𝑊  prefix  ( 𝑁  mod  ( ♯ ‘ 𝑊 ) ) ) ) ) ) | 
						
							| 10 |  | swrdcl | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( 𝑊  substr  〈 ( 𝑁  mod  ( ♯ ‘ 𝑊 ) ) ,  ( ♯ ‘ 𝑊 ) 〉 )  ∈  Word  𝑉 ) | 
						
							| 11 |  | pfxcl | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( 𝑊  prefix  ( 𝑁  mod  ( ♯ ‘ 𝑊 ) ) )  ∈  Word  𝑉 ) | 
						
							| 12 |  | ccatlen | ⊢ ( ( ( 𝑊  substr  〈 ( 𝑁  mod  ( ♯ ‘ 𝑊 ) ) ,  ( ♯ ‘ 𝑊 ) 〉 )  ∈  Word  𝑉  ∧  ( 𝑊  prefix  ( 𝑁  mod  ( ♯ ‘ 𝑊 ) ) )  ∈  Word  𝑉 )  →  ( ♯ ‘ ( ( 𝑊  substr  〈 ( 𝑁  mod  ( ♯ ‘ 𝑊 ) ) ,  ( ♯ ‘ 𝑊 ) 〉 )  ++  ( 𝑊  prefix  ( 𝑁  mod  ( ♯ ‘ 𝑊 ) ) ) ) )  =  ( ( ♯ ‘ ( 𝑊  substr  〈 ( 𝑁  mod  ( ♯ ‘ 𝑊 ) ) ,  ( ♯ ‘ 𝑊 ) 〉 ) )  +  ( ♯ ‘ ( 𝑊  prefix  ( 𝑁  mod  ( ♯ ‘ 𝑊 ) ) ) ) ) ) | 
						
							| 13 | 10 11 12 | syl2anc | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( ♯ ‘ ( ( 𝑊  substr  〈 ( 𝑁  mod  ( ♯ ‘ 𝑊 ) ) ,  ( ♯ ‘ 𝑊 ) 〉 )  ++  ( 𝑊  prefix  ( 𝑁  mod  ( ♯ ‘ 𝑊 ) ) ) ) )  =  ( ( ♯ ‘ ( 𝑊  substr  〈 ( 𝑁  mod  ( ♯ ‘ 𝑊 ) ) ,  ( ♯ ‘ 𝑊 ) 〉 ) )  +  ( ♯ ‘ ( 𝑊  prefix  ( 𝑁  mod  ( ♯ ‘ 𝑊 ) ) ) ) ) ) | 
						
							| 14 | 13 | ad2antrr | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℤ )  ∧  𝑊  ≠  ∅ )  →  ( ♯ ‘ ( ( 𝑊  substr  〈 ( 𝑁  mod  ( ♯ ‘ 𝑊 ) ) ,  ( ♯ ‘ 𝑊 ) 〉 )  ++  ( 𝑊  prefix  ( 𝑁  mod  ( ♯ ‘ 𝑊 ) ) ) ) )  =  ( ( ♯ ‘ ( 𝑊  substr  〈 ( 𝑁  mod  ( ♯ ‘ 𝑊 ) ) ,  ( ♯ ‘ 𝑊 ) 〉 ) )  +  ( ♯ ‘ ( 𝑊  prefix  ( 𝑁  mod  ( ♯ ‘ 𝑊 ) ) ) ) ) ) | 
						
							| 15 |  | lennncl | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑊  ≠  ∅ )  →  ( ♯ ‘ 𝑊 )  ∈  ℕ ) | 
						
							| 16 |  | pm3.21 | ⊢ ( ( ( ♯ ‘ 𝑊 )  ∈  ℕ  ∧  𝑁  ∈  ℤ )  →  ( 𝑊  ∈  Word  𝑉  →  ( 𝑊  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑊 )  ∈  ℕ  ∧  𝑁  ∈  ℤ ) ) ) ) | 
						
							| 17 | 16 | ex | ⊢ ( ( ♯ ‘ 𝑊 )  ∈  ℕ  →  ( 𝑁  ∈  ℤ  →  ( 𝑊  ∈  Word  𝑉  →  ( 𝑊  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑊 )  ∈  ℕ  ∧  𝑁  ∈  ℤ ) ) ) ) ) | 
						
							| 18 | 15 17 | syl | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑊  ≠  ∅ )  →  ( 𝑁  ∈  ℤ  →  ( 𝑊  ∈  Word  𝑉  →  ( 𝑊  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑊 )  ∈  ℕ  ∧  𝑁  ∈  ℤ ) ) ) ) ) | 
						
							| 19 | 18 | ex | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( 𝑊  ≠  ∅  →  ( 𝑁  ∈  ℤ  →  ( 𝑊  ∈  Word  𝑉  →  ( 𝑊  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑊 )  ∈  ℕ  ∧  𝑁  ∈  ℤ ) ) ) ) ) ) | 
						
							| 20 | 19 | com24 | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( 𝑊  ∈  Word  𝑉  →  ( 𝑁  ∈  ℤ  →  ( 𝑊  ≠  ∅  →  ( 𝑊  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑊 )  ∈  ℕ  ∧  𝑁  ∈  ℤ ) ) ) ) ) ) | 
						
							| 21 | 20 | pm2.43i | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( 𝑁  ∈  ℤ  →  ( 𝑊  ≠  ∅  →  ( 𝑊  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑊 )  ∈  ℕ  ∧  𝑁  ∈  ℤ ) ) ) ) ) | 
						
							| 22 | 21 | imp31 | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℤ )  ∧  𝑊  ≠  ∅ )  →  ( 𝑊  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑊 )  ∈  ℕ  ∧  𝑁  ∈  ℤ ) ) ) | 
						
							| 23 |  | simpl | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑊 )  ∈  ℕ  ∧  𝑁  ∈  ℤ ) )  →  𝑊  ∈  Word  𝑉 ) | 
						
							| 24 |  | zmodfzp1 | ⊢ ( ( 𝑁  ∈  ℤ  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ )  →  ( 𝑁  mod  ( ♯ ‘ 𝑊 ) )  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 25 | 24 | ancoms | ⊢ ( ( ( ♯ ‘ 𝑊 )  ∈  ℕ  ∧  𝑁  ∈  ℤ )  →  ( 𝑁  mod  ( ♯ ‘ 𝑊 ) )  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 26 | 25 | adantl | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑊 )  ∈  ℕ  ∧  𝑁  ∈  ℤ ) )  →  ( 𝑁  mod  ( ♯ ‘ 𝑊 ) )  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 27 |  | lencl | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( ♯ ‘ 𝑊 )  ∈  ℕ0 ) | 
						
							| 28 |  | nn0fz0 | ⊢ ( ( ♯ ‘ 𝑊 )  ∈  ℕ0  ↔  ( ♯ ‘ 𝑊 )  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 29 | 27 28 | sylib | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( ♯ ‘ 𝑊 )  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 30 | 29 | adantr | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑊 )  ∈  ℕ  ∧  𝑁  ∈  ℤ ) )  →  ( ♯ ‘ 𝑊 )  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 31 |  | swrdlen | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ( 𝑁  mod  ( ♯ ‘ 𝑊 ) )  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) )  ∧  ( ♯ ‘ 𝑊 )  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) )  →  ( ♯ ‘ ( 𝑊  substr  〈 ( 𝑁  mod  ( ♯ ‘ 𝑊 ) ) ,  ( ♯ ‘ 𝑊 ) 〉 ) )  =  ( ( ♯ ‘ 𝑊 )  −  ( 𝑁  mod  ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 32 | 23 26 30 31 | syl3anc | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑊 )  ∈  ℕ  ∧  𝑁  ∈  ℤ ) )  →  ( ♯ ‘ ( 𝑊  substr  〈 ( 𝑁  mod  ( ♯ ‘ 𝑊 ) ) ,  ( ♯ ‘ 𝑊 ) 〉 ) )  =  ( ( ♯ ‘ 𝑊 )  −  ( 𝑁  mod  ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 33 |  | pfxlen | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ( 𝑁  mod  ( ♯ ‘ 𝑊 ) )  ∈  ( 0 ... ( ♯ ‘ 𝑊 ) ) )  →  ( ♯ ‘ ( 𝑊  prefix  ( 𝑁  mod  ( ♯ ‘ 𝑊 ) ) ) )  =  ( 𝑁  mod  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 34 | 25 33 | sylan2 | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑊 )  ∈  ℕ  ∧  𝑁  ∈  ℤ ) )  →  ( ♯ ‘ ( 𝑊  prefix  ( 𝑁  mod  ( ♯ ‘ 𝑊 ) ) ) )  =  ( 𝑁  mod  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 35 | 32 34 | oveq12d | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑊 )  ∈  ℕ  ∧  𝑁  ∈  ℤ ) )  →  ( ( ♯ ‘ ( 𝑊  substr  〈 ( 𝑁  mod  ( ♯ ‘ 𝑊 ) ) ,  ( ♯ ‘ 𝑊 ) 〉 ) )  +  ( ♯ ‘ ( 𝑊  prefix  ( 𝑁  mod  ( ♯ ‘ 𝑊 ) ) ) ) )  =  ( ( ( ♯ ‘ 𝑊 )  −  ( 𝑁  mod  ( ♯ ‘ 𝑊 ) ) )  +  ( 𝑁  mod  ( ♯ ‘ 𝑊 ) ) ) ) | 
						
							| 36 | 27 | nn0cnd | ⊢ ( 𝑊  ∈  Word  𝑉  →  ( ♯ ‘ 𝑊 )  ∈  ℂ ) | 
						
							| 37 |  | zmodcl | ⊢ ( ( 𝑁  ∈  ℤ  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ )  →  ( 𝑁  mod  ( ♯ ‘ 𝑊 ) )  ∈  ℕ0 ) | 
						
							| 38 | 37 | nn0cnd | ⊢ ( ( 𝑁  ∈  ℤ  ∧  ( ♯ ‘ 𝑊 )  ∈  ℕ )  →  ( 𝑁  mod  ( ♯ ‘ 𝑊 ) )  ∈  ℂ ) | 
						
							| 39 | 38 | ancoms | ⊢ ( ( ( ♯ ‘ 𝑊 )  ∈  ℕ  ∧  𝑁  ∈  ℤ )  →  ( 𝑁  mod  ( ♯ ‘ 𝑊 ) )  ∈  ℂ ) | 
						
							| 40 |  | npcan | ⊢ ( ( ( ♯ ‘ 𝑊 )  ∈  ℂ  ∧  ( 𝑁  mod  ( ♯ ‘ 𝑊 ) )  ∈  ℂ )  →  ( ( ( ♯ ‘ 𝑊 )  −  ( 𝑁  mod  ( ♯ ‘ 𝑊 ) ) )  +  ( 𝑁  mod  ( ♯ ‘ 𝑊 ) ) )  =  ( ♯ ‘ 𝑊 ) ) | 
						
							| 41 | 36 39 40 | syl2an | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑊 )  ∈  ℕ  ∧  𝑁  ∈  ℤ ) )  →  ( ( ( ♯ ‘ 𝑊 )  −  ( 𝑁  mod  ( ♯ ‘ 𝑊 ) ) )  +  ( 𝑁  mod  ( ♯ ‘ 𝑊 ) ) )  =  ( ♯ ‘ 𝑊 ) ) | 
						
							| 42 | 35 41 | eqtrd | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  ( ( ♯ ‘ 𝑊 )  ∈  ℕ  ∧  𝑁  ∈  ℤ ) )  →  ( ( ♯ ‘ ( 𝑊  substr  〈 ( 𝑁  mod  ( ♯ ‘ 𝑊 ) ) ,  ( ♯ ‘ 𝑊 ) 〉 ) )  +  ( ♯ ‘ ( 𝑊  prefix  ( 𝑁  mod  ( ♯ ‘ 𝑊 ) ) ) ) )  =  ( ♯ ‘ 𝑊 ) ) | 
						
							| 43 | 22 42 | syl | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℤ )  ∧  𝑊  ≠  ∅ )  →  ( ( ♯ ‘ ( 𝑊  substr  〈 ( 𝑁  mod  ( ♯ ‘ 𝑊 ) ) ,  ( ♯ ‘ 𝑊 ) 〉 ) )  +  ( ♯ ‘ ( 𝑊  prefix  ( 𝑁  mod  ( ♯ ‘ 𝑊 ) ) ) ) )  =  ( ♯ ‘ 𝑊 ) ) | 
						
							| 44 | 9 14 43 | 3eqtrd | ⊢ ( ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℤ )  ∧  𝑊  ≠  ∅ )  →  ( ♯ ‘ ( 𝑊  cyclShift  𝑁 ) )  =  ( ♯ ‘ 𝑊 ) ) | 
						
							| 45 | 44 | expcom | ⊢ ( 𝑊  ≠  ∅  →  ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℤ )  →  ( ♯ ‘ ( 𝑊  cyclShift  𝑁 ) )  =  ( ♯ ‘ 𝑊 ) ) ) | 
						
							| 46 | 6 45 | pm2.61ine | ⊢ ( ( 𝑊  ∈  Word  𝑉  ∧  𝑁  ∈  ℤ )  →  ( ♯ ‘ ( 𝑊  cyclShift  𝑁 ) )  =  ( ♯ ‘ 𝑊 ) ) |