Step |
Hyp |
Ref |
Expression |
1 |
|
0csh0 |
⊢ ( ∅ cyclShift 𝑁 ) = ∅ |
2 |
|
oveq1 |
⊢ ( 𝑊 = ∅ → ( 𝑊 cyclShift 𝑁 ) = ( ∅ cyclShift 𝑁 ) ) |
3 |
|
id |
⊢ ( 𝑊 = ∅ → 𝑊 = ∅ ) |
4 |
1 2 3
|
3eqtr4a |
⊢ ( 𝑊 = ∅ → ( 𝑊 cyclShift 𝑁 ) = 𝑊 ) |
5 |
4
|
fveq2d |
⊢ ( 𝑊 = ∅ → ( ♯ ‘ ( 𝑊 cyclShift 𝑁 ) ) = ( ♯ ‘ 𝑊 ) ) |
6 |
5
|
a1d |
⊢ ( 𝑊 = ∅ → ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) → ( ♯ ‘ ( 𝑊 cyclShift 𝑁 ) ) = ( ♯ ‘ 𝑊 ) ) ) |
7 |
|
cshword |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) → ( 𝑊 cyclShift 𝑁 ) = ( ( 𝑊 substr 〈 ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) ++ ( 𝑊 prefix ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ) ) |
8 |
7
|
fveq2d |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) → ( ♯ ‘ ( 𝑊 cyclShift 𝑁 ) ) = ( ♯ ‘ ( ( 𝑊 substr 〈 ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) ++ ( 𝑊 prefix ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ) ) ) |
9 |
8
|
adantr |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) ∧ 𝑊 ≠ ∅ ) → ( ♯ ‘ ( 𝑊 cyclShift 𝑁 ) ) = ( ♯ ‘ ( ( 𝑊 substr 〈 ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) ++ ( 𝑊 prefix ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ) ) ) |
10 |
|
swrdcl |
⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 substr 〈 ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) ∈ Word 𝑉 ) |
11 |
|
pfxcl |
⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 prefix ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ∈ Word 𝑉 ) |
12 |
|
ccatlen |
⊢ ( ( ( 𝑊 substr 〈 ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) ∈ Word 𝑉 ∧ ( 𝑊 prefix ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ∈ Word 𝑉 ) → ( ♯ ‘ ( ( 𝑊 substr 〈 ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) ++ ( 𝑊 prefix ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ) ) = ( ( ♯ ‘ ( 𝑊 substr 〈 ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) ) + ( ♯ ‘ ( 𝑊 prefix ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ) ) ) |
13 |
10 11 12
|
syl2anc |
⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ ( ( 𝑊 substr 〈 ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) ++ ( 𝑊 prefix ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ) ) = ( ( ♯ ‘ ( 𝑊 substr 〈 ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) ) + ( ♯ ‘ ( 𝑊 prefix ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ) ) ) |
14 |
13
|
ad2antrr |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) ∧ 𝑊 ≠ ∅ ) → ( ♯ ‘ ( ( 𝑊 substr 〈 ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) ++ ( 𝑊 prefix ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ) ) = ( ( ♯ ‘ ( 𝑊 substr 〈 ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) ) + ( ♯ ‘ ( 𝑊 prefix ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ) ) ) |
15 |
|
lennncl |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) → ( ♯ ‘ 𝑊 ) ∈ ℕ ) |
16 |
|
pm3.21 |
⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑁 ∈ ℤ ) → ( 𝑊 ∈ Word 𝑉 → ( 𝑊 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑁 ∈ ℤ ) ) ) ) |
17 |
16
|
ex |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ → ( 𝑁 ∈ ℤ → ( 𝑊 ∈ Word 𝑉 → ( 𝑊 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑁 ∈ ℤ ) ) ) ) ) |
18 |
15 17
|
syl |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) → ( 𝑁 ∈ ℤ → ( 𝑊 ∈ Word 𝑉 → ( 𝑊 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑁 ∈ ℤ ) ) ) ) ) |
19 |
18
|
ex |
⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 ≠ ∅ → ( 𝑁 ∈ ℤ → ( 𝑊 ∈ Word 𝑉 → ( 𝑊 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑁 ∈ ℤ ) ) ) ) ) ) |
20 |
19
|
com24 |
⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 ∈ Word 𝑉 → ( 𝑁 ∈ ℤ → ( 𝑊 ≠ ∅ → ( 𝑊 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑁 ∈ ℤ ) ) ) ) ) ) |
21 |
20
|
pm2.43i |
⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑁 ∈ ℤ → ( 𝑊 ≠ ∅ → ( 𝑊 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑁 ∈ ℤ ) ) ) ) ) |
22 |
21
|
imp31 |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) ∧ 𝑊 ≠ ∅ ) → ( 𝑊 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑁 ∈ ℤ ) ) ) |
23 |
|
simpl |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑁 ∈ ℤ ) ) → 𝑊 ∈ Word 𝑉 ) |
24 |
|
zmodfzp1 |
⊢ ( ( 𝑁 ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) → ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
25 |
24
|
ancoms |
⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
26 |
25
|
adantl |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑁 ∈ ℤ ) ) → ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
27 |
|
lencl |
⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) |
28 |
|
nn0fz0 |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ0 ↔ ( ♯ ‘ 𝑊 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
29 |
27 28
|
sylib |
⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
30 |
29
|
adantr |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑁 ∈ ℤ ) ) → ( ♯ ‘ 𝑊 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
31 |
|
swrdlen |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ ( ♯ ‘ 𝑊 ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( ♯ ‘ ( 𝑊 substr 〈 ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) ) = ( ( ♯ ‘ 𝑊 ) − ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ) |
32 |
23 26 30 31
|
syl3anc |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑁 ∈ ℤ ) ) → ( ♯ ‘ ( 𝑊 substr 〈 ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) ) = ( ( ♯ ‘ 𝑊 ) − ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ) |
33 |
|
pfxlen |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( ♯ ‘ ( 𝑊 prefix ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ) = ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) |
34 |
25 33
|
sylan2 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑁 ∈ ℤ ) ) → ( ♯ ‘ ( 𝑊 prefix ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ) = ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) |
35 |
32 34
|
oveq12d |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑁 ∈ ℤ ) ) → ( ( ♯ ‘ ( 𝑊 substr 〈 ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) ) + ( ♯ ‘ ( 𝑊 prefix ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ) ) = ( ( ( ♯ ‘ 𝑊 ) − ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) + ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ) |
36 |
27
|
nn0cnd |
⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℂ ) |
37 |
|
zmodcl |
⊢ ( ( 𝑁 ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) → ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ∈ ℕ0 ) |
38 |
37
|
nn0cnd |
⊢ ( ( 𝑁 ∈ ℤ ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ ) → ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ∈ ℂ ) |
39 |
38
|
ancoms |
⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑁 ∈ ℤ ) → ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ∈ ℂ ) |
40 |
|
npcan |
⊢ ( ( ( ♯ ‘ 𝑊 ) ∈ ℂ ∧ ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ∈ ℂ ) → ( ( ( ♯ ‘ 𝑊 ) − ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) + ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) = ( ♯ ‘ 𝑊 ) ) |
41 |
36 39 40
|
syl2an |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑁 ∈ ℤ ) ) → ( ( ( ♯ ‘ 𝑊 ) − ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) + ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) = ( ♯ ‘ 𝑊 ) ) |
42 |
35 41
|
eqtrd |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ( ♯ ‘ 𝑊 ) ∈ ℕ ∧ 𝑁 ∈ ℤ ) ) → ( ( ♯ ‘ ( 𝑊 substr 〈 ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) ) + ( ♯ ‘ ( 𝑊 prefix ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ) ) = ( ♯ ‘ 𝑊 ) ) |
43 |
22 42
|
syl |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) ∧ 𝑊 ≠ ∅ ) → ( ( ♯ ‘ ( 𝑊 substr 〈 ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) , ( ♯ ‘ 𝑊 ) 〉 ) ) + ( ♯ ‘ ( 𝑊 prefix ( 𝑁 mod ( ♯ ‘ 𝑊 ) ) ) ) ) = ( ♯ ‘ 𝑊 ) ) |
44 |
9 14 43
|
3eqtrd |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) ∧ 𝑊 ≠ ∅ ) → ( ♯ ‘ ( 𝑊 cyclShift 𝑁 ) ) = ( ♯ ‘ 𝑊 ) ) |
45 |
44
|
expcom |
⊢ ( 𝑊 ≠ ∅ → ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) → ( ♯ ‘ ( 𝑊 cyclShift 𝑁 ) ) = ( ♯ ‘ 𝑊 ) ) ) |
46 |
6 45
|
pm2.61ine |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) → ( ♯ ‘ ( 𝑊 cyclShift 𝑁 ) ) = ( ♯ ‘ 𝑊 ) ) |