Step |
Hyp |
Ref |
Expression |
1 |
|
cshwlen |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑁 ∈ ℤ ) → ( ♯ ‘ ( 𝑊 cyclShift 𝑁 ) ) = ( ♯ ‘ 𝑊 ) ) |
2 |
1
|
ad2ant2r |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) → ( ♯ ‘ ( 𝑊 cyclShift 𝑁 ) ) = ( ♯ ‘ 𝑊 ) ) |
3 |
2
|
eqcomd |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) → ( ♯ ‘ 𝑊 ) = ( ♯ ‘ ( 𝑊 cyclShift 𝑁 ) ) ) |
4 |
3
|
3adant3 |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ∧ ( 𝑊 cyclShift 𝑁 ) = ( 𝑈 cyclShift 𝑀 ) ) → ( ♯ ‘ 𝑊 ) = ( ♯ ‘ ( 𝑊 cyclShift 𝑁 ) ) ) |
5 |
|
fveq2 |
⊢ ( ( 𝑊 cyclShift 𝑁 ) = ( 𝑈 cyclShift 𝑀 ) → ( ♯ ‘ ( 𝑊 cyclShift 𝑁 ) ) = ( ♯ ‘ ( 𝑈 cyclShift 𝑀 ) ) ) |
6 |
5
|
3ad2ant3 |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ∧ ( 𝑊 cyclShift 𝑁 ) = ( 𝑈 cyclShift 𝑀 ) ) → ( ♯ ‘ ( 𝑊 cyclShift 𝑁 ) ) = ( ♯ ‘ ( 𝑈 cyclShift 𝑀 ) ) ) |
7 |
|
cshwlen |
⊢ ( ( 𝑈 ∈ Word 𝑉 ∧ 𝑀 ∈ ℤ ) → ( ♯ ‘ ( 𝑈 cyclShift 𝑀 ) ) = ( ♯ ‘ 𝑈 ) ) |
8 |
7
|
ad2ant2l |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) → ( ♯ ‘ ( 𝑈 cyclShift 𝑀 ) ) = ( ♯ ‘ 𝑈 ) ) |
9 |
8
|
3adant3 |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ∧ ( 𝑊 cyclShift 𝑁 ) = ( 𝑈 cyclShift 𝑀 ) ) → ( ♯ ‘ ( 𝑈 cyclShift 𝑀 ) ) = ( ♯ ‘ 𝑈 ) ) |
10 |
4 6 9
|
3eqtrd |
⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑈 ∈ Word 𝑉 ) ∧ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ∧ ( 𝑊 cyclShift 𝑁 ) = ( 𝑈 cyclShift 𝑀 ) ) → ( ♯ ‘ 𝑊 ) = ( ♯ ‘ 𝑈 ) ) |