| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cshwrepswhash1.m |
⊢ 𝑀 = { 𝑤 ∈ Word 𝑉 ∣ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 cyclShift 𝑛 ) = 𝑤 } |
| 2 |
|
nnnn0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) |
| 3 |
|
repsdf2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( 𝑊 = ( 𝐴 repeatS 𝑁 ) ↔ ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) ( 𝑊 ‘ 𝑖 ) = 𝐴 ) ) ) |
| 4 |
2 3
|
sylan2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → ( 𝑊 = ( 𝐴 repeatS 𝑁 ) ↔ ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) ( 𝑊 ‘ 𝑖 ) = 𝐴 ) ) ) |
| 5 |
|
simp1 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) ( 𝑊 ‘ 𝑖 ) = 𝐴 ) → 𝑊 ∈ Word 𝑉 ) |
| 6 |
5
|
adantl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) ( 𝑊 ‘ 𝑖 ) = 𝐴 ) ) → 𝑊 ∈ Word 𝑉 ) |
| 7 |
|
eleq1 |
⊢ ( 𝑁 = ( ♯ ‘ 𝑊 ) → ( 𝑁 ∈ ℕ ↔ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ) |
| 8 |
7
|
eqcoms |
⊢ ( ( ♯ ‘ 𝑊 ) = 𝑁 → ( 𝑁 ∈ ℕ ↔ ( ♯ ‘ 𝑊 ) ∈ ℕ ) ) |
| 9 |
|
lbfzo0 |
⊢ ( 0 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ↔ ( ♯ ‘ 𝑊 ) ∈ ℕ ) |
| 10 |
9
|
biimpri |
⊢ ( ( ♯ ‘ 𝑊 ) ∈ ℕ → 0 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 11 |
8 10
|
biimtrdi |
⊢ ( ( ♯ ‘ 𝑊 ) = 𝑁 → ( 𝑁 ∈ ℕ → 0 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
| 12 |
11
|
3ad2ant2 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) ( 𝑊 ‘ 𝑖 ) = 𝐴 ) → ( 𝑁 ∈ ℕ → 0 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
| 13 |
12
|
com12 |
⊢ ( 𝑁 ∈ ℕ → ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) ( 𝑊 ‘ 𝑖 ) = 𝐴 ) → 0 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
| 14 |
13
|
adantl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) ( 𝑊 ‘ 𝑖 ) = 𝐴 ) → 0 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) ) |
| 15 |
14
|
imp |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) ( 𝑊 ‘ 𝑖 ) = 𝐴 ) ) → 0 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) |
| 16 |
|
cshw0 |
⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 cyclShift 0 ) = 𝑊 ) |
| 17 |
6 16
|
syl |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) ( 𝑊 ‘ 𝑖 ) = 𝐴 ) ) → ( 𝑊 cyclShift 0 ) = 𝑊 ) |
| 18 |
|
oveq2 |
⊢ ( 𝑛 = 0 → ( 𝑊 cyclShift 𝑛 ) = ( 𝑊 cyclShift 0 ) ) |
| 19 |
18
|
eqeq1d |
⊢ ( 𝑛 = 0 → ( ( 𝑊 cyclShift 𝑛 ) = 𝑊 ↔ ( 𝑊 cyclShift 0 ) = 𝑊 ) ) |
| 20 |
19
|
rspcev |
⊢ ( ( 0 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ∧ ( 𝑊 cyclShift 0 ) = 𝑊 ) → ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 cyclShift 𝑛 ) = 𝑊 ) |
| 21 |
15 17 20
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) ( 𝑊 ‘ 𝑖 ) = 𝐴 ) ) → ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 cyclShift 𝑛 ) = 𝑊 ) |
| 22 |
|
eqeq2 |
⊢ ( 𝑤 = 𝑊 → ( ( 𝑊 cyclShift 𝑛 ) = 𝑤 ↔ ( 𝑊 cyclShift 𝑛 ) = 𝑊 ) ) |
| 23 |
22
|
rexbidv |
⊢ ( 𝑤 = 𝑊 → ( ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 cyclShift 𝑛 ) = 𝑤 ↔ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 cyclShift 𝑛 ) = 𝑊 ) ) |
| 24 |
23
|
rspcev |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 cyclShift 𝑛 ) = 𝑊 ) → ∃ 𝑤 ∈ Word 𝑉 ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 cyclShift 𝑛 ) = 𝑤 ) |
| 25 |
6 21 24
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) ∧ ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) ( 𝑊 ‘ 𝑖 ) = 𝐴 ) ) → ∃ 𝑤 ∈ Word 𝑉 ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 cyclShift 𝑛 ) = 𝑤 ) |
| 26 |
25
|
ex |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) ( 𝑊 ‘ 𝑖 ) = 𝐴 ) → ∃ 𝑤 ∈ Word 𝑉 ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 cyclShift 𝑛 ) = 𝑤 ) ) |
| 27 |
4 26
|
sylbid |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → ( 𝑊 = ( 𝐴 repeatS 𝑁 ) → ∃ 𝑤 ∈ Word 𝑉 ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 cyclShift 𝑛 ) = 𝑤 ) ) |
| 28 |
27
|
3impia |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ∧ 𝑊 = ( 𝐴 repeatS 𝑁 ) ) → ∃ 𝑤 ∈ Word 𝑉 ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 cyclShift 𝑛 ) = 𝑤 ) |
| 29 |
|
repsw |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ) → ( 𝐴 repeatS 𝑁 ) ∈ Word 𝑉 ) |
| 30 |
2 29
|
sylan2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → ( 𝐴 repeatS 𝑁 ) ∈ Word 𝑉 ) |
| 31 |
30
|
3adant3 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ∧ 𝑊 = ( 𝐴 repeatS 𝑁 ) ) → ( 𝐴 repeatS 𝑁 ) ∈ Word 𝑉 ) |
| 32 |
|
simpll3 |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ∧ 𝑊 = ( 𝐴 repeatS 𝑁 ) ) ∧ 𝑢 ∈ Word 𝑉 ) ∧ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝑊 = ( 𝐴 repeatS 𝑁 ) ) |
| 33 |
32
|
oveq1d |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ∧ 𝑊 = ( 𝐴 repeatS 𝑁 ) ) ∧ 𝑢 ∈ Word 𝑉 ) ∧ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 cyclShift 𝑛 ) = ( ( 𝐴 repeatS 𝑁 ) cyclShift 𝑛 ) ) |
| 34 |
|
simp1 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ∧ 𝑊 = ( 𝐴 repeatS 𝑁 ) ) → 𝐴 ∈ 𝑉 ) |
| 35 |
34
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ∧ 𝑊 = ( 𝐴 repeatS 𝑁 ) ) ∧ 𝑢 ∈ Word 𝑉 ) ∧ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝐴 ∈ 𝑉 ) |
| 36 |
2
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ∧ 𝑊 = ( 𝐴 repeatS 𝑁 ) ) → 𝑁 ∈ ℕ0 ) |
| 37 |
36
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ∧ 𝑊 = ( 𝐴 repeatS 𝑁 ) ) ∧ 𝑢 ∈ Word 𝑉 ) ∧ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝑁 ∈ ℕ0 ) |
| 38 |
|
elfzoelz |
⊢ ( 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) → 𝑛 ∈ ℤ ) |
| 39 |
38
|
adantl |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ∧ 𝑊 = ( 𝐴 repeatS 𝑁 ) ) ∧ 𝑢 ∈ Word 𝑉 ) ∧ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → 𝑛 ∈ ℤ ) |
| 40 |
|
repswcshw |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0 ∧ 𝑛 ∈ ℤ ) → ( ( 𝐴 repeatS 𝑁 ) cyclShift 𝑛 ) = ( 𝐴 repeatS 𝑁 ) ) |
| 41 |
35 37 39 40
|
syl3anc |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ∧ 𝑊 = ( 𝐴 repeatS 𝑁 ) ) ∧ 𝑢 ∈ Word 𝑉 ) ∧ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝐴 repeatS 𝑁 ) cyclShift 𝑛 ) = ( 𝐴 repeatS 𝑁 ) ) |
| 42 |
33 41
|
eqtrd |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ∧ 𝑊 = ( 𝐴 repeatS 𝑁 ) ) ∧ 𝑢 ∈ Word 𝑉 ) ∧ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 cyclShift 𝑛 ) = ( 𝐴 repeatS 𝑁 ) ) |
| 43 |
42
|
eqeq1d |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ∧ 𝑊 = ( 𝐴 repeatS 𝑁 ) ) ∧ 𝑢 ∈ Word 𝑉 ) ∧ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 cyclShift 𝑛 ) = 𝑢 ↔ ( 𝐴 repeatS 𝑁 ) = 𝑢 ) ) |
| 44 |
43
|
biimpd |
⊢ ( ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ∧ 𝑊 = ( 𝐴 repeatS 𝑁 ) ) ∧ 𝑢 ∈ Word 𝑉 ) ∧ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 cyclShift 𝑛 ) = 𝑢 → ( 𝐴 repeatS 𝑁 ) = 𝑢 ) ) |
| 45 |
44
|
rexlimdva |
⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ∧ 𝑊 = ( 𝐴 repeatS 𝑁 ) ) ∧ 𝑢 ∈ Word 𝑉 ) → ( ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 cyclShift 𝑛 ) = 𝑢 → ( 𝐴 repeatS 𝑁 ) = 𝑢 ) ) |
| 46 |
45
|
ralrimiva |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ∧ 𝑊 = ( 𝐴 repeatS 𝑁 ) ) → ∀ 𝑢 ∈ Word 𝑉 ( ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 cyclShift 𝑛 ) = 𝑢 → ( 𝐴 repeatS 𝑁 ) = 𝑢 ) ) |
| 47 |
|
eqeq1 |
⊢ ( 𝑤 = ( 𝐴 repeatS 𝑁 ) → ( 𝑤 = 𝑢 ↔ ( 𝐴 repeatS 𝑁 ) = 𝑢 ) ) |
| 48 |
47
|
imbi2d |
⊢ ( 𝑤 = ( 𝐴 repeatS 𝑁 ) → ( ( ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 cyclShift 𝑛 ) = 𝑢 → 𝑤 = 𝑢 ) ↔ ( ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 cyclShift 𝑛 ) = 𝑢 → ( 𝐴 repeatS 𝑁 ) = 𝑢 ) ) ) |
| 49 |
48
|
ralbidv |
⊢ ( 𝑤 = ( 𝐴 repeatS 𝑁 ) → ( ∀ 𝑢 ∈ Word 𝑉 ( ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 cyclShift 𝑛 ) = 𝑢 → 𝑤 = 𝑢 ) ↔ ∀ 𝑢 ∈ Word 𝑉 ( ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 cyclShift 𝑛 ) = 𝑢 → ( 𝐴 repeatS 𝑁 ) = 𝑢 ) ) ) |
| 50 |
49
|
rspcev |
⊢ ( ( ( 𝐴 repeatS 𝑁 ) ∈ Word 𝑉 ∧ ∀ 𝑢 ∈ Word 𝑉 ( ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 cyclShift 𝑛 ) = 𝑢 → ( 𝐴 repeatS 𝑁 ) = 𝑢 ) ) → ∃ 𝑤 ∈ Word 𝑉 ∀ 𝑢 ∈ Word 𝑉 ( ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 cyclShift 𝑛 ) = 𝑢 → 𝑤 = 𝑢 ) ) |
| 51 |
31 46 50
|
syl2anc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ∧ 𝑊 = ( 𝐴 repeatS 𝑁 ) ) → ∃ 𝑤 ∈ Word 𝑉 ∀ 𝑢 ∈ Word 𝑉 ( ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 cyclShift 𝑛 ) = 𝑢 → 𝑤 = 𝑢 ) ) |
| 52 |
|
eqeq2 |
⊢ ( 𝑤 = 𝑢 → ( ( 𝑊 cyclShift 𝑛 ) = 𝑤 ↔ ( 𝑊 cyclShift 𝑛 ) = 𝑢 ) ) |
| 53 |
52
|
rexbidv |
⊢ ( 𝑤 = 𝑢 → ( ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 cyclShift 𝑛 ) = 𝑤 ↔ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 cyclShift 𝑛 ) = 𝑢 ) ) |
| 54 |
53
|
reu7 |
⊢ ( ∃! 𝑤 ∈ Word 𝑉 ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 cyclShift 𝑛 ) = 𝑤 ↔ ( ∃ 𝑤 ∈ Word 𝑉 ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 cyclShift 𝑛 ) = 𝑤 ∧ ∃ 𝑤 ∈ Word 𝑉 ∀ 𝑢 ∈ Word 𝑉 ( ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 cyclShift 𝑛 ) = 𝑢 → 𝑤 = 𝑢 ) ) ) |
| 55 |
28 51 54
|
sylanbrc |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ∧ 𝑊 = ( 𝐴 repeatS 𝑁 ) ) → ∃! 𝑤 ∈ Word 𝑉 ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 cyclShift 𝑛 ) = 𝑤 ) |
| 56 |
|
reusn |
⊢ ( ∃! 𝑤 ∈ Word 𝑉 ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 cyclShift 𝑛 ) = 𝑤 ↔ ∃ 𝑟 { 𝑤 ∈ Word 𝑉 ∣ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 cyclShift 𝑛 ) = 𝑤 } = { 𝑟 } ) |
| 57 |
55 56
|
sylib |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ∧ 𝑊 = ( 𝐴 repeatS 𝑁 ) ) → ∃ 𝑟 { 𝑤 ∈ Word 𝑉 ∣ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 cyclShift 𝑛 ) = 𝑤 } = { 𝑟 } ) |
| 58 |
1
|
eqeq1i |
⊢ ( 𝑀 = { 𝑟 } ↔ { 𝑤 ∈ Word 𝑉 ∣ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 cyclShift 𝑛 ) = 𝑤 } = { 𝑟 } ) |
| 59 |
58
|
exbii |
⊢ ( ∃ 𝑟 𝑀 = { 𝑟 } ↔ ∃ 𝑟 { 𝑤 ∈ Word 𝑉 ∣ ∃ 𝑛 ∈ ( 0 ..^ ( ♯ ‘ 𝑊 ) ) ( 𝑊 cyclShift 𝑛 ) = 𝑤 } = { 𝑟 } ) |
| 60 |
57 59
|
sylibr |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ∧ 𝑊 = ( 𝐴 repeatS 𝑁 ) ) → ∃ 𝑟 𝑀 = { 𝑟 } ) |
| 61 |
1
|
cshwsex |
⊢ ( 𝑊 ∈ Word 𝑉 → 𝑀 ∈ V ) |
| 62 |
61
|
3ad2ant1 |
⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = 𝑁 ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) ( 𝑊 ‘ 𝑖 ) = 𝐴 ) → 𝑀 ∈ V ) |
| 63 |
4 62
|
biimtrdi |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ) → ( 𝑊 = ( 𝐴 repeatS 𝑁 ) → 𝑀 ∈ V ) ) |
| 64 |
63
|
3impia |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ∧ 𝑊 = ( 𝐴 repeatS 𝑁 ) ) → 𝑀 ∈ V ) |
| 65 |
|
hash1snb |
⊢ ( 𝑀 ∈ V → ( ( ♯ ‘ 𝑀 ) = 1 ↔ ∃ 𝑟 𝑀 = { 𝑟 } ) ) |
| 66 |
64 65
|
syl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ∧ 𝑊 = ( 𝐴 repeatS 𝑁 ) ) → ( ( ♯ ‘ 𝑀 ) = 1 ↔ ∃ 𝑟 𝑀 = { 𝑟 } ) ) |
| 67 |
60 66
|
mpbird |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝑁 ∈ ℕ ∧ 𝑊 = ( 𝐴 repeatS 𝑁 ) ) → ( ♯ ‘ 𝑀 ) = 1 ) |